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Introduction

Our topic are closed curves in the plane that have finitely many double points and no
other multi points. With every such curve c: S1→R

2 we can associate a multigraph called
chord diagram by simply connecting the two preimages of a double point x with an edge:�c

y z

z

xx

y

x

yz

Our aim will be to give a combinatorial characterization of equivalence classes of contin-
uous curves. The precise definitions and many of the constructions involved in the inter-
pretation of a curve as a combinatorial object are founded on deep analytical results such
as the Jordan-Schönflies Theorem and the Rotation Principle. We present a brief overview
of this background in chapter 1 before turning to the task we want to deal with in chapter
2.

Gauss posed the following problem: Which chord diagrams can be realized by a curve that
crosses itself at every double point? Gauss formulated his question in terms of Gauss
codes. A Gauss code is nothing but a representation of a chord diagram as word of 2n
symbols: a Gauss code of the above chord diagram is xyzxzy. A lot of research has been
done on Gauss’ problem and in chapter 2 we are going to present three answers to his
question, which are due to Lovász-Marx [6], Rosenstiehl [9] and De Fraysseix-Ossona de
Mendez [3]. The first two are classic theorems given in the 1970s: Lovász-Marx define a
substructure relation on Gauss codes and give a set of obstructions under this relation
that characterizes cross-realizability. Rosenstiehl shows that a chord diagram is cross-real-
izable iff there exists a partition of the set of chords into two classes that has certain prop-
erties. His proof is based on the theory of maps.

The last one is fairly recent (1997) and its elegance has renewed the interest in the sub-
ject. De Fraysseix-Ossona de Mendez define an operation called “switch duplication” on
crossing curves that preserves cross-realizability. Using this operation they can transform
a crossing curve into a touching curve and touching curves are easy to characterize. This
idea provides them not only with an elegant original characterization of cross-realizability,
but it also turns out that the condition of the Rosenstiehl Criterion is invariant
under “switch duplication” and thus they obtain a short proof of Rosenstiehl’s theorem.
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It turns out, that all three theorems are closely related to the following fundamental
observation: On the one hand a curve c with a crossing double point x can be transformed
into a curve c′ in which x is touching, while on the other hand c can be transformed into a
pair of curves c1 and c2 that touch at x.

← →

This observation leads us to consider curves that can have both touching and/or crossing
double points. To cope with this more general kind of curve we introduce augmented
chord diagrams. We use the left-hand side of the above figure to define a switch operation
on these objects under which realizability is invariant to obtain a de Fraysseix-Ossona de
Mendez-type characterization of this more general kind of curve. We are then able to for-
mulate and prove a Rosenstiehl-type criterion for the realizability of augmented chord dia-
grams, generalizing the approach of de Fraysseix-Ossona de Mendez. From these general-
izations, the theorems by Rosenstiehl and de Fraysseix-Ossona de Mendez follow as a
corollary and, following Aigner [1], we give a proof of the Lovász-Marx Criterion from the
original Rosenstiehl Criterion. We conclude chapter 2 by showing that for every realizable
augmented chord diagram there is exactly one (equivalence class of) realizing curves, and
by providing an outlook on how the right-hand side of the above figure might be incorpo-
rated into this framework.

Note that we do not consider the application of the “switch approach” to graph drawings
instead of curves (see [4]) nor do we consider curves on other surfaces than the
plane/sphere (see [1]).

A thrackle is a drawing of a graph G in the plane such that every two edges e1, e2 have
exactly one point in common: either a common end-point or a common interior point at
which they cross.

Conway introduced these objects and conjectured in the 1960s that if a graph G has a
thrackle drawing then |E(G)| 6 |V (G)|. This conjecture still remains open and the best

known bound to date is |E(G)| 6 3

2
(|V (G)| − 1) [2]. Early on, Woodall showed [10] that

the thrackle conjecture is equivalent to the statement that certain graphs that consist of
two circles that have one vertex in common cannot be thrackled. We give a detailed
account of Woodall’s reduction of the thrackle conjecture. In section 3.4 we turn the
Thrackle Conjecture into a question about closed curves in the plane, to which the tools
developed in chapter 2 can be applied. We demonstrate this by showing that there are
precisely 3 thrackle drawings of C6 and close chapter 3 by introducing “touching thrackles”
and showing that the bound on the number of edges holds in this simpler scenario.

The chapters are more or less independent from one another.
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Chapter 1

From the Continuous to the Discrete

1.1 Curves and Chord Diagrams

The objects we want to study are continuous closed curves in the plane with
finitely many double points and no other multi points.

Two properties of such curves are of particular interest to us:

In what order do we encounter the double points when traversing the curve?

Does the curve “cross” itself or does it “touch” itself at a given double point?

Before making the above precise, let us take a look at some examples. The drawings in
the top row of Figure 1.1 show curves of the type we want to consider, while the curves
shown in the bottom row are not of the type we want to consider. Curves a), b) and c)
have three double points each and no other multi points. Curve d) has a single multi
point through which it passes three times. Curve e) passes through each point in the
interval in the middle twice, and hence has infinitely many double points.

a) b) c)

d) e)

Figure 1.1. We cannot consider a curve as a point set since we need to know how that point set
is traversed. Hence only the images of curves are shown. a), b) and c) are of the type we consider,
while d) and e) are not.

One way to define this type of curve formally would be the following: A closed curve is a
continuous function c: S1→R

2 from the circle S1 = {x∈R2: ‖x‖= 1} into the plane R
2. A

multi point of c is an element x ∈R
2 with |c−1(x)|> 2. A double point of c is a multi
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point x with |c−1(x)|= 2. As already mentioned, we restrict our attention to closed curves
that have a finite number of double points and no other multi points: whenever the
term “curve” is used in the text these restrictions apply, unless something else is explicitly
stated in the text.

However, the above is not the definition we are going to use. Rather, we are going to
adopt a definition based on graph drawings which is presented in section 1.2. The reasons
for this choice are subtle and will become clear later on. However, the familiar definition
above provides the right intuition and is, in fact, synonymous with the definition in sec-
tion 1.2 unless equivalence classes of curves are considered.

Chord Diagrams and Interlacement Graphs

We will now answer our two questions for each of the valid examples from Figure 1.1. If
we traverse a curve once in its entirety, we will, by definition, encounter each double point
exactly twice: Every point x ∈ c(S1) ⊂ R2 corresponds to two points c−1(x) ⊂ S1 on the
circle and all these preimages {y ∈ c−1(x) : |c−1(x)| = 2} occur in some “order” on S1. In
Figure 1.2 the double points of the three example curves are labeled. Their preimages on
the circle are shown on the left hand side; both with the same label to indicate the double
point they correspond to. Additionally, the two preimages of a double point are connected
by a chord. The resulting figures are called the chord diagrams of the corresponding
curves.

y
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z
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x

�c
x

y

z

�c

x

x x

x x

x x

y

y

y

y
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a)

b)

c)

Figure 1.2. The chord diagrams of the three valid examples from Figure 1.1.

10 From the Continuous to the Discrete



It is useful to give here some thought to the notion of “order” we are dealing with, before
giving a formal definition of a chord diagram. A cyclic order on a finite set S is a circle
graph on the vertex set S. A cyclic order is directed, if the graph is a directed circle, and
it is undirected otherwise. A chord diagram C is a pair (Gr, Gc) of graphs on a vertex
set S, where Gr is an undirected cyclic order (i.e. a circle) and Gc a perfect matching. The
edges of Gc are called the chords of C, while Gr is called the rim of C. Note that the
edges of Gr and Gc may coincide, i.e. the disjoint union of both may from a multigraph.

Now, given a curve c the chord diagram C(c) of a curve c is just the cyclic order
given by S1 on the preimages of all double points of c, where the two preimages of a given
double point x are matched. Every abstract chord diagram can be represented visually as
a circle with straight-line chords, as shown above. It is useful to think about chord dia-
grams visually.

The chord diagram of a curve c is also called its Gauss code. The classical way of
defining a Gauss code is this: A 2-word over the alphabet {1, � , k} is a word of length
2k, in which every 1 6 i 6 k occurs exactly twice. We can obtain a 2-word ω over {1,� , k}
from a curve c with k double points, by

i. labeling all double points with distinct numbers i∈{1,� , k},

ii. picking a starting point x∈S1 and an orientation of S1, and

iii. traversing c once, noting down the label of each double point we pass.

As the result ω depends on the choice of starting point and direction we now consider the
equivalence class [ω]∼, where ∼ is obtained by identifying 2-words that differ up to a
cyclic shift and/or reversal. This equivalence class [ω]∼ is then called the Gauss code of c.
It is clear that chord diagrams and Gauss codes are two different representations of the
same concept and we are going to use the two interchangeably.

We call two chords x, y of a chord diagram C interlaced, if their corresponding straight
lines cross. In terms of Gauss codes, this means that there is a 2-word ω representing C of
the form ω = x� y� x� y� . Given a chord diagram C, the interlacement graph I(C) is
the graph on the set of chords, in which two chords are adjacent iff they are interlaced.
For curves c we will write I(c)4 I(C(c)). I(c) is a graph on the set of double points of c.

The interlacement graph of example a) is the complete graph on {x, y, z}. In the inter-
lacement graph of both b) and c), x is adjacent to both y and z, while y and z are not
adjacent.

We call a chord diagram C realizable iff there exists some curve c with C(c) = C. If a
chord diagram is realized at all by some curve c, it is obviously realized by infinitely many
different curves. Of course many of these will be “essentially the same” for our purposes,
which is why we need to consider suitable equivalence classes of curves. The definition and
study of these equivalence classes will take up much of this chapter. The far more impor-
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tant issue of characterizing all realizable chord diagrams will be dealt with in detail in
chapter 2.

Touching and Crossing Double Points

Let us now turn to the second question. When do we consider a double point x to be
touching, when do we consider x to be crossing? Well, intuitively, x is touching if c looks
as shown on the left-hand side of Figure 1.3 and x is crossing if c looks as on the right-
hand side in a small neighborhood of x.

Figure 1.3. Touching and crossing double points.

Let us sketch a formal definition of “touching” and “crossing”. Given a double point x,
there exists a small neighborhood N around x that contains no double point other than x,
because there are only finitely many double points. Also, N can be chosen such that
c−1(N) has exactly 2 components. Restricting c to each of these two subsets of S1 in turn,
we obtain two segments c1 and c2 of c. In Figure 1.3 the two segments are shown in dif-
ferent colors. Now, c1 divides N into two connected regions. x is touching iff c2 meets
only one of these regions and it is crossing iff c2 meets both of these regions. We call this
the type of the double point x.

This is a “sketch” of a definition rather than a proper definition, because, to see that the
terms are well-defined, we need among countless other analytical details the fact that c1

divides N into two regions, which implies the Jordan Curve Theorem. So the “obvious”
fact that a double point is either touching or crossing turns out to be closely tied to a
deep analytical theorem. By and large we will take these “obvious” facts for granted, how-
ever we will take a tour of the analytical machinery involved in section 1.3.

For the sake of convenience we agree on the following convention: whenever the image of a
curve c in a figure “looks like” the left-hand side of Figure 1.3 in a small neighborhood of a
double point, that double point is understood to be touching and the segments of c are
understood to be as defined by the colors in Figure 1.3. Accordingly, a double point is
understood to be crossing if it “looks like” the right-hand side of Figure 1.3.

Following this convention, the double points of the example curves in Figure 1.2 are as
listed in the following table:

a) b) c)
x crossing touching touching
y crossing touching touching
z crossing touching crossing

12 From the Continuous to the Discrete



Equivalence Classes of Curves

As already mentioned, none of the figures uniquely define a curve: There are several
curves c realizing a given figure, even when it is understood how each double point is sup-
posed to be traversed (i.e. what the segments in a small neighborhood of a double point
are supposed to be). In fact, while there are infinitely many functions c: S1→ R

2 with k

double points, there are only finitely many chord diagrams with k chords and only finitely
many vectors in {crossing, touching}k. It stands to reason that we will want to consider
equivalence classes of such functions c instead of individual functions. We will now
develop some intuitive notions about when we would like to regard two curves c1 and c2 as
essentially the same, in the context of the types of curves we consider and in the context
of the properties we are interested in.

i. We identify curves c1 and c2 that differ only up to reparametrization. This means
that c1 traverses the same set of points as c2 but at a different “speed” (cf. Figure
1.4). This obviously leaves the order and the type of the double points invariant.


c1 �c2
Figure 1.4. The curves c1 and c2 the same image at different speeds: the image of the
dashed segment of S1 under c1 is much longer than the image under c2.

ii. We identify curves c1 and c2 that differ only up to reversal. The images of c1 and c2

are identical but are traversed in opposite directions. This corresponds to the fact
that we regard the rim of a chord diagram as undirected.


c1 �c2
Figure 1.5. c1 is the reverse of c2.

iii. We identify curves c1 and c2 that differ only up to a homeomorphism of the plane.
If we can stretch and squeeze, translate and scale, rotate and reflect the entire
plane to transform c1 into c2, we will identify the two. Note that the reflection of a

1.1 Curves and Chord Diagrams 13



curve and its reversal are two different operations.

Figure 1.6. For any two of these images there is an automorphism of the plane trans-
forming the one into the other.

iv. We identify curves c1 and c2 that differ only up to polar transformation. Homeo-
morphisms do not change the region of the plane that is “outside” of our drawings.
However, two curves that differ only with regard to the region that is “outside”, i.e.
unbounded, have the same chord diagram and the double points have the same
type.

a) d)

b) c)

l

↔

l

Figure 1.7. Polar transformation. a) We are given a curve in the plane which we want
to transform such that the face that contains the star is “outside”. We start by picking a
large circle that contains the entire curve. By identifying all points on this circle (or by
using a more elaborate construction such as the stereographic projection) we obtain a
drawing of the curve on the sphere such as the one shown in b). The dot represents the
point to which the circle has been shrunk. c) We can now “pull” segments of the curve
around the back of the sphere, i.e. apply an automorphism of the sphere. The crucial step
is that we can remove the point marked with the star from the sphere to obtain a topo-
logical space homeomorphic to the disk shown in d).
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We have now identified several operations on curves that appear to have no effect on the
two properties of curves we are interested in. Based on these observations we could now
give the following definition, if we were to stick to the view of a curve as a continuous
function. Let i: R2 → S2 be the (inverse of the) stereographic projection. Two curves c1

and c2 are equivalent, iff there exist homeomorphisms h1: S1 → S1 and h2: S2 → S2 such
that

h2 ◦ i◦ c1 ◦ h1 = i ◦ c2

This means, we first regard c1 and c2 as curves i ◦ c1 and i ◦ c2 on the sphere and then
allow these curves to differ up to homeomorphisms of the sphere by introducing h2. The
combined effect is that we make identifications iii. and iv. as well as i. However, ii. is not
included, as the example given in ii. shows, so we have to introduce h1 to allow for the
reversal of curves. As already mentioned we will instead adopt the definition presented in
the next section, though.

We will often identify a curve with its equivalence class. In most cases the term “curve”
will refer to an equivalence class of curves. It will be explicitly mentioned when we make
an exception to this rule or when we want to stress that we are talking about equivalence
classes.

1.2 Curves and Graphs

Our definitions of a curve and what it means for a double point to be touching or crossing
were analytic. The fact that we consider only curves with a finite number of double points
and no other multi points allows us to take also a discrete point of view. The idea is that
the image of a curve c defines the drawing of a graph G(c) in the plane, the vertices of
which are the double points, while the way the curve traverses its image defines an Euler
tour through that graph.

For this to be correct we need to carefully define what exactly an Euler tour is. Normally
one would define an Euler tour to be a walk that contains every edge exactly once. How-
ever, this definition is too coarse for our purposes here. Consider Figures 1.8a) and 1.8b).
The graph defined by the image of these two curves is in both cases a single vertex x with
two loops a and b (Figure 1.8c). If we consider a tour as an alternating sequence of ver-
tices and edges (with the usual properties) then the Euler tour is xaxbx in both cases,
even though the curves are different: the curve on the left traverses one edge in the oppo-
site direction than the curve on the right. To capture this difference in our concept of an
Euler tour, we will consider an edge e = vw as a pair of half-edges h1 and h2. The order
of the two half edges in the tour then gives the direction in which we traverse the corre-
sponding edge. In our example, we consider the edge a as a pair of half-edges a1 and a2

and the edge b as pair of half-edges b1 and b2 as shown in Figure 1.8d). The curve a) then

1.2 Curves and Graphs 15



corresponds to the Euler tour a1 a2 b2 b1 and the curve b) corresponds to the Euler tour
a1 a2 b1 b2 – so we can distinguish between the two.

a) b)

c) d)

a b

a1

a2 b2

b1

x x

Figure 1.8. The curves a) and b) are different but they define the same plane graph c). The
Euler tours of a) and b) in c) are both xaxb x. Considering every edge as a pair of half edges as
in d) we can distinguish between the tours a1 a2 b2 b1 and a1 a2 b1 b2 .

We are now going to give precise definitions of all the concepts involved and mention some
related theorems and lemmata. No attempt is made to prove the presented results, how-
ever, as a sound derivation of the related theory is out of the scope of this work.

Multigraphs

A multigraph G is a triple (V , H, E) of a set H, the elements of which are called half-
edges and two partitions V and E of this set H. V is an arbitrary partition of H into n

classes which are called vertices. E is a partition of H into classes of size 2 that are
called edges. The pair (V , E) forms a multigraph as usual, where v ∈ V is incident to e ∈
E iff there exists a half-edge h ∈ v ∩ e. We say a half-edge h is incident with a vertex v if
h∈ v and h belongs to an edge e if h∈ e. If for two half edges h and h′ we have {h, h′}⊂ v

for some vertex v, we say that h and h′ share v. Similarly h and h′ share an edge e if {h,

h′} ⊂ e. Note that two half-edges can share at most one vertex and at most one edge.
However they can share both a vertex and an edge at the same time, in which case they
form a loop.

Given a fixed multigraph G a walk is a sequence w = h1� h2k of half-edges with the prop-
erty that hi and hi+1 share an edge if i is odd, and that they share a vertex if i is even.
The shared vertices and edges are said to be contained in w and it is this alternating
sequence of vertices and edges that is usually called a walk. A walk is closed if h1 and h2k

share a vertex. We identify walks that differ only up to cyclic shifts, i.e. we identify w

with all walks of the form h2j+1� h2kh1� h2j. We call a walk undirected if we also iden-
tify walks that differ up to reversal; otherwise we call the walk directed. By default a
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walk is considered to be undirected. A walk is simple if it contains no edge more than
once. Note that a simple walk can be seen as a cyclic order on a set of half-edges. A cycle
is walk that contains no vertex more than once. A simple, undirected walk that contains
all vertices and all edges of a multigraph is called an Euler tour. If a multigraph G has
an Euler tour, it is called Eulerian.

Drawings of Multigraphs

An arc is either an open arc or a closed arc and these are defined as follows: an open arc
is the image (!) of some continuous, injective function f : [0, 1]→R2. The points f(0) and
f(1) are the endpoints of the arc and the image of the open interval (0, 1) under f is the
interior of the arc. Note that the endpoints and the interior of an arc are independent of
the choice of f . An open arc is said to connect its endpoints. A closed arc is the image
of a continuous, injective function f : S1→ R

2 with a given endpoint x ∈ f(S1). The inte-
rior of an open arc is f(S1) \ x. A set X ⊂R

2 is connected if for any two points x, y ∈X

there exists an arc connecting the two. A segment of an arc given by some function f is
the image of the restriction of f to some connected subset of the domain of f , i.e.
an “interval”.

Intuitively, a plane drawing of a multigraph G is a drawing of G in the plane such that no
two edges meet, except at a common vertex. We will now give a precise definition. To
keep things simple we consider only (drawings of) multigraphs G that have no isolated
vertices. In particular we do not consider the graph that consists of a single vertex and no
edge, but we do allow the graph that consists of a single loop. A drawing or embedding
of a multigraph G in the plane is a function d mapping each half-edge h of G to a simple
open arc d(h) in the plane, with the following properties: a) if h � h ′, then d(h) and d(h′)
do not have an interior point in common, b) for every edge e of G there is a point d(e)
that exactly the two half-edges belonging to e have in common, c) for every vertex v of G

there is a point d(v) which exactly the half-edges incident with v have in common and d)
the points d(a) for a ∈ V ∪E are all distinct. Note that a consequence of this definition is
that the d(e) and the d(v) are endpoints of the corresponding (sets of) half-edges. A pair
(G, d) of a multigraph G and a plane drawing d of G is a plane multigraph. If G has a
plane drawing, it is called planar. We will sometimes denote a plane multigraph by a
single letter G, without assigning a separate symbol to the actual drawing d.

Given a plane multigraph (G, d), we can consider the subset
⋃

h∈H
d(h) of the plane. In

abuse of notation we will denote this set with d(G). Similarly, we can consider an edge
e = {h, h ′} of G as a subset d(h) ∪ d(h ′) of the plane, which turns out to be an open or
closed arc. The vertices v, in turn, are the points d(v) ∈ R

2. The faces of (G, d) are the
connected components of R2 \ d(G). Note that the faces of a multigraph are open. The
terms closure, interior, and boundary have the usual topological definition. However,
the following lemma allows us to attach some combinatorial meaning to these topological
terms.
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1.1. Let G be a plane multigraph.

i. The interior of an edge e is either contained in or disjoint from the
boundary of a face f .

ii. An edge e is in the boundary of 16 k 6 2 faces. k = 1 iff e is a bridge.

iii. The boundary of a face can be traversed by a closed walk w that con-
tains every edge at most twice. For an edge e contained in w, we
have: e is traversed twice iff e is a bridge. If e is traversed twice by
w, it is traversed in opposite directions.

These statements are fairly intuitive. However, as with most results presented in this
chapter, we are not going to give a proof of 1.1.

A Curve as a Graph Drawing with an Euler Tour

We can now define what a curve is supposed to be. A curve c is a triple (G, d, τ ) where
G is a 4-regular multigraph, d a plane drawing of G and τ an Euler tour of G. The
double points of c are the vertices of G. If c is a curve we denote the graph G with
G(c).

This really is our definition of a curve. The analytical concept mentioned in the previous
section does not serve as a definition, even though a continuous function c: S1→ R

2 with
the given properties certainly does define a such triple (G, d, τ ). The reason for this choice
will become clear later on, when we count the number of different realizations of a given
chord diagram.

If we consider a curve as a triple (G, d, τ ), what, then, is a chord diagram? The chord dia-
gram of a curve is uniquely determined by the pair (G, τ), i.e. it is not dependent on the
drawing d, as it can be constructed in the following fashion: We duplicate every vertex of
G and insert a chord between the two copies of each vertex. If h1,� , h4 are the half-edges
incident with a vertex v and the Euler tour is of the form τ = h1h2� h3h4� , then one copy
of v is incident with the half-edges h1 and h2 while the other is incident with h3 and h4.

Conversely, given a chord diagram C we can obtain the graph G by contracting every
chord of C and we can obtain τ by deleting every chord of C (and considering τ as the
cyclic order on the half-edges given by the resulting circle). All in all, we can view the
combinatorial part of a curve either as a pair (G, τ) or as chord diagram C and both of
these views are equivalent.

In this setting, let us again consider what it means for two chords x and y to be inter-
laced. The four vertices incident to x and y divide the rim of C into four segments. x and
y are interlaced iff all four segments connect vertices of different chords. x and y are not
interlaced iff only two segments connect vertices of different chords (see Figure 1.9). Con-
sider the graph G′ obtained from C by contracting x and y and deleting all other chords.
x and y are interlaced iff there are 4 edge-disjoint walks from x to y in G′ and they are
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not interlaced iff there only 2 edge-disjoint walks from x to y. Note that the above obser-
vation about edge-disjoint walks does not hold for G as Figure 1.9e) shows.

d)c)

e)

a) b)

↓ ↓

Figure 1.9. In chord diagram a) the two chords are interlaced. Contracting both one obtains the
multigraph c) in which there are four edge-disjoint walks connecting the two. In chord diagram b)
the two chords are not interlaced and contracting both we obtain multigraph d) in which there
are only two edge-disjoint walks between the two. e) Shows two non-interlaced double points of a
curve that are nonetheless connected by four edge-disjoint walks in the induced multigraph G.

Equivalence Classes of Graph Drawings

As indicated in the previous section we want to consider equivalence classes of curves. To
that end we need to develop a concept of equivalence for multigraph drawings (G, d). One
objective is to identify multigraph drawings that differ only up to polar transformation.
For this purpose we regard a drawing d of a multigraph G in the plane as a drawing i ◦ d

of G on the sphere, where i: R2→ S2 \ {(0, 0, 1)} is a fixed homeomorphism such as the
(the inverse of) the stereographic projection. The definition of a drawing on the sphere is
just the definition of a plane drawing where the plane R2 has been replaced with the
sphere S2. The results about faces and boundaries hold just the same. Note that con-
versely, given a drawing d of G on the sphere, we can always find a point x � d(G) and
construct a homeomorphism j: S2 \ {x} →R2 using x as north pole, such that j ◦ d gives
us a drawing of G in the plane.

Let d and d′ denote two drawings of a multigraph G on the sphere. d and d′ are equiva-
lent iff there exists a homeomorphism ϕ: S2→S2 such that ϕ ◦ d = d′. This means that for
any half-edge h we have ϕ(d(h)) = d′(h), which implies that ϕ maps edges onto edges and
vertices onto vertices. This definition has the desired effects outlined in section 1.1.

Note, however, that this definition does not take possible symmetries of G into account,
so that we do not have to deal with any non-trivial automorphisms G may have. Figure
1.10 shows two non-equivalent drawings of the same graph. In 1.10a) there is a face that
has both the loop incident with vertex y and the loop incident with vertex z on its
boundary. In 1.10b) there is no such face.
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Figure 1.10. Two non-equivalent drawings of a multigraph with three vertices x, y, z.

Having now defined a concept of equivalence for graph drawings, we can finally take to
the task of defining a concept of equivalence for curves. It does not suffice for our pur-
poses to require that two curves (G, d, τ) and (G, d′, τ ′) have equivalent plane graphs (G,

d) and (G, d′) as the example from Figure 1.8 shows: We regard (G, d, a1 a2 b1 b2 ) and (G,

d, a1 a2 b2 b1) as different even though the graph drawings are not only equivalent but iden-
tical. So we define two curves (G, d, τ ) and (G, d′, τ ′) to be equivalent iff (G, d) and (G,

d′) are equivalent and τ = τ ′. Note that we defined Euler tours τ as undirected walks, so
these are equivalence classes of curves that differ up to cyclic shifts and/or reversal.

Recall that the chord diagram of a curve depends only upon G and τ , so equivalent curves
have the same chord diagram by definition. It is far from clear, though, whether the type
of a given double point x is the same for all curves in a given equivalence class. However,
our definition of equivalence is such that it makes sense to speak of “the double point x of
a given equivalence class of curves”. Had we defined a curve as a function this would not
be possible as a double point x in c1 might have several counterparts in an equivalent
curve c2 and thus we would have to take automorphisms of the underlying graph G(c1)
into account.

Two graph drawings (and consequently two curves) are equivalent if there exist certain
homeomorphisms. If we want to show that such homeomorphisms do not exist, we can
look at the effect the composition of a graph drawing d with a homeomorphism has on the
edges and faces of d in the hope of developing necessary criteria for the equivalence of
graph drawings. The following results about the effect of a homeomorphism on the faces
and boundaries of a graph drawing are immediate and of combinatorial interest:

1.2. Let G be a plane multigraph and ϕ:R2→R
2 a homeomorphism.

i. An edge e is in the boundary of a face f of G iff ϕ(e) is in the
boundary of ϕ(f) in ϕ(G).

ii. A walk w is the boundary-walk of a face f of G iff ϕ(w) is the
boundary-walk of ϕ(f) in ϕ(G).

Analogous statements hold for multigraphs embedded on the sphere or (any
other surface).

Obviously 1.2 is of great combinatorial interest as it states that the combinatorial relation-
ship between edges and faces is preserved by homeomorphisms. It is thus well-defined to
speak of “the boundary-walks” of an equivalence class of curves. 1.2 gives rise to the hope
that a combinatorial characterization of the equivalence of graph drawings can be found,
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and indeed this is the case. However the path to such a characterization is far too long to
be presented here. In the next section, we will merely take a look at some important mile-
stones along the way.

1.3 “Obvious” Analytical Theorems

One of the fundamental results on plane graphs is Euler’s formula.

1.3. Euler’s Formula

If G is a plane graph with v vertices, e edges and f faces, then

v− e + f =2

Considering a simple closed curve as a plane drawing of the graph with a single vertex
and one loop, the Jordan Curve Theorem becomes a special case of Euler’s formula.

1.4. Jordan Curve Theorem

A simple closed curve c: S1→R
2 divides the plane into two connected com-

ponents and c is the boundary of both. One component F is bounded (in
the sense of ∃r∀x∈F : ‖x‖<r) while the other is unbounded.

The Jordan Curve Theorem appears to be so “obvious” that one feels inclined to take it
for granted. In fact, Euler took it for granted when formulating his theorem: Euler died in
1783, more than 50 years before Jordan was born in 1838 and more than a century before
the first correct proof of the Jordan Curve Theorem was given by Veblen in 1905 [8].

As was already indicated, most of the results in this thesis are based on analytical facts
like the Jordan Curve Theorem. The most crucial of these is that for every plane graph
there exists a set of neighborhoods around the vertices and edges that “look as we would
expect” (see 1.9). Unfortunately these “obvious” facts are too deep for us to prove within
the scope of this work. So we will confine ourselves to presenting some essential theorems,
not all of which are obvious. The most remarkable of these is the Heffter-Edmonds-Ringel
Rotation Principle 1.10.

This section is based on the book by Mohar and Thomassen [8], to which we refer the
interested reader for details.

Constructing Homeomorphisms

Showing that two graph drawings are equivalent requires the construction of a homeomor-
phism. The premiere tool for the construction of homeomorphisms is the Jordan-Schön-
flies Theorem.

1.5. Jordan-Schönflies Theorem

Let c: S1 → R
2 and c′: S1 → R

2 denote simple closed curves in the plane.
Then c′ ◦ c−1: c(S1)→ c′(S1) is a homeomorphism which can be extended to
a homeomorphism h:R2→R

2 of the entire plane.
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This in effect says that any two curves without double points are equivalent. The Jordan-
Schönflies Theorem is much stronger than the Jordan Curve Theorem as it guarantees the
existence of an homeomorphism of the entire plane and the latter follows easily from the
former: The identity id: S1→R

2 is a simple closed curve in the plane. The complement of
S1 is the union of the sets {x: ‖x‖> 1} and {x: ‖x‖< 1} both of which are obviously con-
nected and have S1 as the boundary. The two sets are different components because ‖ · ‖:
R

2 → R is continuous. As faces are mapped to faces and boundaries are mapped to
boundaries under homeomorphisms, the Jordan Curve Theorem now follows from the
Jordan-Schönflies Theorem.

Of course we want to obtain a result on the equivalence of closed curves with a finite
number of double points, or, respectively, on the equivalence of plane graphs. The Jordan-
Schönflies Theorem can be applied to prove the following lemma.

1.6. Lemma

Let x, y be two distinct points in the plane and c1, c2, c3 three simple curves
connecting the two, whose interiors are mutually disjoint. Then c1 ∪ c2 ∪ c3

has three faces that are bounded by c1∪ c2, c2∪ c3 and c3∪ c1 respectively.
Let F denote the face of c1 ∪ c2 not containing c3. Then any homeomor-
phism h: F̄ → h(F̄ )⊂R2 can be extended to a homeomorphism h′: R2→R2

that maps c3 onto any given c3
′ connecting h(x) and h(y) whose interior is in

R2 \F .

By iterative application of this lemma and a structure theorem for 2-connected graphs, a
version of the Jordan-Schönflies theorem for 2-connected graphs can be obtained. Note
that for any two isomorphic plane graphs (G, d) and (G′, d′) there exists a homeomor-
phism h: d(G)→ d(G′).

1.7. Jordan-Schönflies Theorem for 2-Connected Graphs

Let (G, d) be a 2-connected plane graph with faces (Fi)16i6k and corre-
sponding boundaries (Bi)16i6k. Let F1 denote the unbounded face (the face
on the “outside”).

1. F1 is homeomorphic to an open cylinder {x ∈ R
2:

1

2
< ‖x‖ < 1} while

the Fi for i> 2 are homeomorphic to an open disk {x∈R2: ‖x‖< 1}.

2. The Bi are simple cycles of G, such that each edge of G occurs
exactly twice in all the cycles taken together.

3. Let (G′, d′) be another plane graph such that G′ is isomorphic to G.
Let (Fi

′)16i6k denote the faces of d′ with corresponding boundaries
(Bi

′)16i6k such that F1
′ is unbounded. Then any homeomorphism h:

d(G)→ d(G′) with h(Bi
′) = Bi can be extended to a homeomorphism

h:R2→R2.
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Now, this is already a big step in the right direction. It does not characterize our notion
of equivalence for graph drawings entirely, though, as it allows us only to construct home-
omorphisms between 2-connected plane graphs and not between general multigraphs
embedded on the sphere. Nonetheless, this theorem is an important ingredient in most of
the theorems involved in proving the Rotation Principle 1.10, in particular 1.9 which is of
interest to us in its own right.

“Nice” Neighborhoods

1.8. Let G = (V , E) be a plane graph. There exists a family (Nv)v∈V of disjoint
neighborhoods Nv around every vertex v, with the property that for every
edge e there is a point x on e with x � Nv for all v. Furthermore there is a
family (Ne)e∈E of closed neighborhoods Ne around the set e \

⋃

v∈V
Nv for

every edge e, such that the Ne are mutually disjoint and disjoint from every
Nv and all of G is covered by

⋃

v∈V
Nv∪

⋃

e∈E
Ne.

Consider the example in Figure 1.11. Note that an edge e may have infinitely many points
in common with the boundary of an Nv and that e may pass into and out of Nv several
times. In general an Ne may even have infinitely many components. Furthermore 1.8 does
not tell us much about how the neighborhoods actually look like.

v

Figure 1.11. The edges of the graph can cross the boundary of Nv multiple times. If this is the
case for an edge e, its neighborhood Ne has multiple components.

Using the Jordan-Schönflies Theorem and its analogue for graphs it is possible to
strengthen 1.8 considerably.
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1.9. Let G, (Nv)v∈V and (Ne)e∈E be as in 1.8.

i. In every Nv there exists a simple closed arc cv around v that meets
every half-edge incident with v exactly once.

ii. The clockwise order of the half-edges on this arc is uniquely deter-
mined, i.e. it does not depend on the choice of Nv or c.

iii. Let f be the bounded face of c. There exists a homeomorphism of
the plane mapping c ∪ f to the wheel with d(v) spokes as depicted in
Figure 1.12.

Let h be a half-edge of G and v the vertex h is incident with. Let ph denote
the point where h meets cv. For every half-edge h let ph

− be a point on cv

that immediately precedes ph in the clockwise order and let ph
+ be a point

that succeeds ph in the clockwise order, i.e. the only element of {ph′

−, ph′, ph′

+ :
h′ a half-edge} in between ph

− and ph
+ is ph.

iv. For every edge e = vw with half-edges h1 = (v, e) and h2 = (w, e) there

exist simple closed arcs ce
1 and ce

2 connecting ph1

− with ph2

+ and ph1

+

with ph2

− , respectively. The arcs {ce
1, ce

2: e ∈ E} are mutually disjoint,
they do not meet any edge of G, and they meet only cv and cw in the
aforementioned points.

v. We can traverse these arcs in the following way to obtain a simple
closed arcs ce

′ :

ph1

−�ce
1

ph2

+�cw

ph2

−�ce
2

ph1

+�cv

ph1

−

Here cv and cw are traversed in clockwise direction. The bounded
face of this simple closed arc is a neighborhood of e. There exists a
homeomorphism of the plane mapping this arc and this neighborhood
of e to the dumbbell shape depicted in Figure 1.13.
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v

h

ph

cv

Figure 1.12. The arc cv is dashed. It meets every half-edge h incident with v in exactly one
point ph.

v wh2h1

ph1

−

ph1

ph1

+

cv cw

ph2

+

ph2

−

ph2e

ce
1

ce
2

Figure 1.13. The edges in a drawing of a multigraph have a “nice” neighborhood that is homeo-
morphic to this dumbbell-shape.

In effect 1.9 states that there exist small neighborhoods around the vertices and edges of a
plane graph that look as we would expect them to. We are going to use 1.9 quite often,
implicitly as well as explicitly, and especially in chapter 3. Note in particular that 1.9.ii
says that for an individual curve c the concept of crossing and touching double points is
well defined. However, we do not yet know whether the type of a double point x is the
same for all curves in a given equivalence class.

Rotation Systems, Surfaces and the Rotation Principle

A local rotation πv at a vertex v of a plane multigraph G is a directed cyclic order of the
half-edges incident with v. A rotation system is a family (πv)v∈V of local rotations, one

for every vertex. We identify rotation systems (πv)v∈V and (πv
−1)v∈V that differ up to

reversal of all local rotations. By 1.9 we know that the rotation system of a plane multi-
graph is a well-defined object.
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Let c = (G, d, τ) be a curve and x one if its double points. We denote the half-edges of x

with h1,� , h4 such that τ = h1h2� h3h4� . By 1.9 the drawing d defines a local rotation πx

which is a directed cyclic order of {h1,� , h4}. The type of x is crossing iff the pairs {h1,

h2} and {h3, h4} are interlaced and the type of x is touching if they are not interlaced.
See Figure 1.14.

a) b) h1

h2

h3

h4

h1

h2

h3

h4

Figure 1.14. If τ = h1h2�h3h4� then a) is a touching double point while b) is a crossing double
point.

We already defined a chord diagram C to be realizable, iff there is a curve c with C(c) =
C. The curve c is then called a realization of C. We can now refine this concept. C is
cross-realizable iff there is a realization in which all double points are crossing. C is
touch-realizable iff there is a realization in which all double points are touching. Let S

be the set of chords of C. Let ϑ: S → {touching, crossing} be a function assigning a type
to each of the chords of C. We say C is ϑ-realizable iff there is a realization in which
every chord x has type ϑ(x). We will study the realizability of chord diagrams in chapter
2.

First, we need to see whether it is well defined to speak of the type of a chord in a given
equivalence class of curves: Does it make sense to talk about the rotation system of an
equivalence class of plane multigraphs? We can observe that the reflection of the plane at
an axis swaps the clockwise and anti-clockwise orientation of all simple closed arcs cv, thus
reversing the local rotation at every vertex of a graph G, so our identification of (πv)v∈V

with (πv
−1)v∈V is indeed necessary. But it is not clear whether this identification suffices to

make the rotation system of an equivalence class a well defined concept.

It turns out that not only every equivalence class of plane multigraphs has a well defined
rotation system, but that the converse is also true: for every rotation system there is an
equivalence class of graph drawings on some surface with the given rotation system and,
furthermore, the rotation system of a plane multigraph G uniquely defines the equivalence
class of G. These astonishing results constitute what is known as the Heffter-Edmonds-
Ringel Rotation Principle. To be able to formulate this powerful theorem, we shall now
introduce the concept of a surface.

A surface is a non-empty, compact, connected, Hausdorff space S with the property that
every x ∈ S has a small neighborhood N that is homeomorphic to the open disk (which in
turn is homeomorphic to the plane). Examples of surfaces include the sphere, the torus,
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the Klein bottle and the projective plane. The plane is not a surface as it is not compact.

We can now consider “drawings of multigraphs without crossings” on arbitrary surfaces.
A “multigraph G embedded in the plane” then becomes a “multigraph G embedded in a
surface S”. The definitions of embedding, face, equivalent, etc. carry over directly from the
planar case; we simply need to replace R

2 with S. We can interpret the plane multigraphs
G we have been considering up to now as embeddings of G on the sphere via the inverse
of the stereographic projection – something we needed to do anyway for our concept of
equivalence of plane multigraphs.

We call a surface S orientable iff it does not contain a Möbius strip. More formally, we
say a surface is orientable iff every simple closed arc a ⊂ S has a small neighborhood N ⊃
a such that N \ a is not connected. We call an embedding of a multigraph G in S cel-
lular iff every face of G is homeomorphic to the open disk. Given such a cellular embed-
ding an analogue of 1.9 still holds, the only problem is that we do not know what “clock-
wise” is supposed to mean on a general surface. However we can find arcs cv, ce

1 and ce
2 as

stated in 1.9. Even without a notion of “clockwise” we can define the curve ce
′ mentioned

in 1.9. Now, we start with a vertex v of G and define an orientation of cv to be clockwise.
Via ce

′ this induces a notion of clockwise for all arcs cw around adjacent vertices w. As we
consider only connected multigraphs G, this defines a clockwise orientation around every
vertex v ∈V (G).

Again, the question arises whether this is well-defined. Not surprisingly, this algorithm
yields a well defined result if and only if S is orientable. The condition that S does not
contain a Möbius strip excludes problematic situations like the two depicted in Figure
1.15.

Figure 1.15. If the arcs ce
1, ce

2 and points ph
+, ph

− from 1.9 are connected as in these two exam-
ples, an orientation of the arcs cv around the vertices cannot be defined consistently. By consid-
ering only surfaces that do not contain a Möbius-strip situations such as these can be avoided.

All in all we have an analogue of 1.9 for cellular embeddings of multigraphs on arbitrary
orientable surfaces. In particular, the concept of a rotation system is well defined in this
case. This is the aspect we were headed for, because now we can formulate the Rotation
Principle, which is a beautiful theorem that deserves to be appreciated in its own right.
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1.10. Heffter-Edmonds-Ringel Rotation Principle

Let G denote a connected multigraph G containing at least one edge.

i. For every rotation system (πv)v of G there exists an orientable sur-
face S and a cellular embedding d of G in S such that rotation
system of d is (πv)v.

Let (G, d) and (G, d′) be cellular embeddings of G in surfaces S and S ′

respectively and let (πv)v and (πv
′)v denote their respective rotation systems.

ii. There exists a homeomorphism h: S → S ′ such that d′ = h ◦ d if and
only if (πv)v =(πv

′)v.

Recall that according to the identification we made earlier (πv)v = (πv
−1)v. The Rotation

Principle provides us with a combinatorial characterization of when two multigraph draw-
ings (in the plane or on the sphere) are equivalent.

1.11. Let (G, d) and (G, d′) denote plane multigraphs with rotation systems (πv)v

and (πv
′)v. (G, d) and (G, d′) are equivalent if and only if (πv)v =(πv

′)v.

Let us stress two consequences of 1.11 that are crucial for our purposes: On the one hand
1.11 allows us to count the number of equivalence classes of plane drawings [(G, d)] as we
could instead count the pairs (G, (πv)v) that yield a cellular embedding of G on the sphere
– if we knew which pairs (G, (πv)v) have this property. On the other hand we see that all
graph drawings in one equivalence class have the same rotation system. As the type of a
double point of a curve (G, d, τ) was defined in terms of its rotation system, we conclude
that it is well defined to speak of the type of a double point x in an equivalence class of
curves. Note that the type of the double points in a curve (G, d, τ ) is dependent on all
three parameters, while the chord diagram of a curve is only dependent on G and τ .

1.4 Maps and Dual Graphs

Sometimes, for example in [8], rotation systems are also called maps. These are not to be
confused with another important concept that is frequently referred to as a “map”: a map
is a triple (π, τ , σ) of fix-point free involutions on a ground set of flags. A flag can be
thought of as a “quarter” of an edge; the flags of an edge e correspond to the points ph1

− ,
ph1

+ , ph2

− , ph2

+ in 1.9. The three involutions on the set of flags of course have a geometrical
interpretation – as do the rotation system (πv)v and the partitions V and E on the set of
half-edges in our case. Figure 1.16 shows a side-by-side comparison of the two concepts.
Note the similarity of Figure 1.16b) to Figure 1.13.
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a) b)

Figure 1.16. a) A local rotation defines a cyclic permutation on the half-edges incident to a
vertex. An edge, being a set of two half-edges, can be seen as fixpoint-free involution on the two
half-edges. b) In the context of a map, an edge is represented as a set of four flags (shown in
black). Three different fixpoint-free involutions are defined on the set of flags, shown with solid,
dotted and dashed arrows respectively.

Note that maps are a more general concept than abstract multigraphs with rotation sys-
tems, as they allow the representation of cellular embeddings of graphs on non-orientable
surfaces. Rosenstiehl’s original proof of his theorem 2.14 is based on maps, and indeed
these techniques can be applied to characterize Gauss codes of curves on other surfaces
than the sphere [1]. We will not consider this approach further as the idea is to pursue a
different route based on the work of de Fraysseix and Ossona de Mendez [3].

Let G be a plane multigraph with vertex set V , edge set E and face set F . Its dual G∗ is
defined as follows: the vertices of G∗ are the faces of G and the edge set of G∗ is the edge
set of G. In G∗ an edge e is incident to a face f ∈ F iff e is contained in the boundary of
f in G. If e is contained in the boundary of only one face f of G it forms a loop e = ff in
G∗. The faces of G∗ in turn correspond to the vertices of G, so that we have G = (G∗)∗.
Note that the edges contained in a boundary-walk of a face f of G are just the edges inci-
dent with the vertex f in G∗. A bridge in the boundary-walk of the face f corresponds to
a loop incident with the vertex f .

Figure 1.17. Graphs and their dual.

We now want to consider colorings of the faces of G such that no two faces that have a
common edge in their boundaries have the same color, i.e. we are interested in colorings of
G∗ such that no two adjacent vertices of G∗ have the same color. We call such colorings
proper. We have the following theorem.

1.12. The faces of a curve c can be properly colored with black and white. I.e. if
G= G(c) is the underlying plane graph of c then χ(G∗)= 2.
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Proof. We have to show that G∗ has no odd cycle. The cycle space of G∗ is spanned by
the boundary-walks of the faces of G∗. The length of a boundary-walk w in G∗ is given by
the degree of the corresponding vertex in G. Note that bridges in w correspond to loops in
G an are thus counted twice. As every vertex in G has degree 4, every boundary-walk and
thus cycle in G∗ is even. �

1.5 The Number of Cross-Realizations

As an application of our work on the characterization of equivalence classes of curves, we
will now count the number of cross-realizations of a given cross-realizable chord diagram
C. Note that we can count these even though we do not yet know which chord diagrams
are cross-realizable. The results presented below can also be found in [3].

1.13. Let C be a chord diagram such that the interlacement graph I(C) is con-
nected. If C is cross-realizable, there is exactly one equivalence class c of
curves realizing C.

Proof. Let (πv)v be the rotation system of a cross-realization of C. Pick any chord x of
C. Let the Euler tour defined by C be of the form τ = h1h2� h3h4� , where h1, h2, h3, h4

are the half-edges incident with vertex x. As x is crossing, there are two possibilities what
the local rotation πx may be:

either h1	πx

h3	πx

h2	πx

h4

or h1	πx

h4	πx

h2	πx

h3.

Note that the one alternative is the reverse of the other. Intuitively, these alternatives cor-
respond to whether the segment h3h4 crosses the segment h1h2 from left to right or from
right to left. We assume that the local rotation at x is given by the first alternative and
show that then all other local rotations are uniquely determined. Reversal of the local
rotation at x has the effect that all other local rotations have to be reversed as well,
proving that the equivalence class of (πv)v is uniquely determined as claimed.

Let y be a chord interlaced with x and denote the half-edges incident with y with h1
′ , � ,

h4
′ as shown in Figure 1.18. x and y split c into four segments α, β, γ, δ. α and β form a

closed curve c′ the faces of which can be colored black and white. Without loss of gener-
ality we assume that h4 resides in a white face. The number of times γ crosses c′ is
uniquely determined by C. As the color of the face the half-edges reside in changes at
each crossing, the color of the face h3

′ resides in is uniquely determined.
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x

x

h1 h2

y
h1
′

h2
′h3

′

h4
′

h3h4

y

α

βγ

δ

Figure 1.18. Two interlaced chords split a chord diagram and a corresponding curve into four
segments α, β, γ, δ. Each contains one half-edge hi incident with x and one half-edge hj

′ incident
with y.

On the other hand we can traverse α from h2 to h1
′ . At each of the crossings of c ′ with

itself we pass, the color of the face on the left hand side changes. The color on the left
hand side of h1

′h2
′ is hence uniquely determined by C and therefore it is uniquely deter-

mined on which side of the segment h1
′h2

′ the half-edge h3
′ resides. Assuming the plane is

oriented clockwise, we put h1
′	πy

h3
′ , if h3

′ is on the left, and h1
′	πy

h4
′ otherwise. �

1.14. Let C be a cross-realizable chord diagram and k the number of components
of its interlacement graph Λ. Then

#cross-realizations of C = 2k−1

Proof. The condition that a double point be crossing determines its local rotation up to
reversal. A given local rotation πx determines the local rotations at all double points in
the same component of Λ as x. So at best we can hope to have one degree of freedom per
component of Λ which gives us an upper bound of 2k. The fact that rotation systems (πv)v

and (πv
−1)v are equivalent yields the upper bound of 2k−1.

To see that 2k−1 different realizations can actually be achieved we employ a simple geo-
metric construction (see Figure 1.19). We use induction on k. Let C be a chord diagram
with k > 2 components. There is one component C ′ that is connected by only 2 edges (in
C) to any other components. Split C at these two edges into chord diagrams C ′ and C ′′

and reconnect the half-edges to obtain new edges e′ and e′′. By induction C ′′ has 2k−2

realizations, let c be any one of those. Take a point on e′′ and a small neighborhood N

around it, insert a realization of C ′ in which e′ is on the boundary of the unbounded face
into that neighborhood and reconnect the edges appropriately. Note that C ′ has only one
equivalence class of realizations. Of the representatives of this class for which e ′ is on the
boundary of the unbounded face, we can either pick one in which h3h4 crosses h1h2 from
left to right or from right to left. This choice leads to 2 different realizations as there is
another (non-empty) component C ′′, the local rotations of which are fixed, so we get 2k−1

different cross-realizations of C.
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a)

b)

c)

d) e)

h1

h2

h3

h4

h1

h3

h4 h2

h3

h2

h1

h4

Figure 1.19. Starting with a chord diagram a), we single out a component C ′ that is connected
to other components via only two edges. We split C accordingly and the two resulting chord dia-
grams are shown in b). One of the two cross-realizations of C ′′ and the cross-realization of C ′ is
shown in c). These can then be combined in two ways d) and e).

�

Let us take a look at the realizations of the chord diagram C = xxyyzz containing three
mutually non-interlaced chords. As I(C) has three components, there are 23−1 = 4 realiza-
tions which are given in 1.20. Had we chosen the concept of an “equivalence class of
curves” as presented in section 1.1, we would have no means to distinguish the last three
realizations from one another. In this case, the number of equivalence classes would have
been 2 and any general formula for the number of different realizations would have to take
symmetries of G(c) into account.

x

yz

x

yz x

z

y z

y

x

Figure 1.20. The four realizations of the chord diagram xxyyzz.
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The proof above required a number of rather informal geometric constructions, because we
have no combinatorial criteria that can guarantee that choosing a different local rotation
when arriving at a new component will not make the multigraph drawing thus defined by
its rotation system non-realizable in the plane. We will develop such criteria in the next
chapter.
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Chapter 2
Characterizations of Curves

2.1 Chord Diagrams and Interlacement Graphs

Closed curves in the plane with finitely many double points and no other multi points are
the objects we want to study. As explained in chapter 1 we can associate with each such
curve c its chord diagram C = C(c) and its interlacement graph Λ = I(C) = I(c) (cf. Figure
2.1).

x

yz
x

y z

x

zy

x

zy

a) b) c)

Figure 2.1. A curve a), its chord diagram b) and its interlacement graph c).

A chord diagram is realizable iff it is of the form C(c) for some curve c. The question we
want to answer in this chapter is the following:

Which chord diagrams are realizable?

As we have also seen in chapter 1, we can associate a type with each double point of a
curve c: every double point is either touching (such as x and y in Figure 2.1) or crossing
(such as z). A chord diagram C is touch-realizable iff it has a realization c that has only
touching double points. Similarly, C is cross-realizable iff it has realization c that has only
crossing double points. Given a type function ϑ that assigns to each chord x of C a type
ϑ(x) ∈ {touching, crossing}, we call C ϑ-realizable iff there is a realization c in which a
double point x has type ϑ(x). We can now refine our question and ask:

Which chord diagrams are touch-realizable/cross-realizable/ϑ-realizable?

It was Gauss who came up with the concept of a chord diagram in the slightly different
form of what is now called a Gauss code (see chapter 1). The original question Gauss
asked about these objects was: Which chord diagrams are cross-realizable?

A lot of work has been done on this problem, and we are going to present three different
answers to Gauss’ question: the theorems by Lovász-Marx, Rosenstiehl and de Fraysseix-
Ossona de Mendez. We will follow the approach taken by de Fraysseix-Ossona de Mendez
who derive a criterion for cross-realizability from a criterion for touch-realizability. Intro-
ducing the concept of augmented chord diagrams, we will then build on their work to give
criteria for realizability and ϑ-realizability.
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In chapter 1 we interpreted a curve c as a triple (G(c), d, τ ) of a 4-regular connected multi-
graph G(c), a drawing d of G(c) in the plane and an Euler tour τ of G(c) and we noted
that the pair (G(c), τ) uniquely defines the chord diagram C(c) and vice versa. We are not
going to stick too closely to this definition of a curve. Instead we will view a curve as
both, a multigraph drawing with an Euler tour on the one hand and as a continuous func-
tion on the other, as this makes the text more accessible.

2.2 Matchings at a Double Point

As we know from 1.9 every double point v of a curve c has a “nice” small neighborhood
Nv. In essence this neighborhood “looks like” Figure 2.2a). In particular it contains (end-
pieces of) the 4 half-edges incident with v. As on any set of 4 elements, there are 3 perfect
matchings on this set of half-edges as shown by the edges with box-ends in Figure 2.2b).
We will now see that the way c traverses the half-edges of G(c) gives each of these match-
ings a special meaning that can be read off from the chord diagram C(c). For this purpose
it is useful to think of a half-edge h as being represented by the point in the plane where h

meets the boundary of Nv.

a) b)ph1

h1
h2

h3

h4

ph4

ph2

ph3

h1 h2

h3h4

h2

h3

h1

h4

h2

h3

h1

h4

Figure 2.2. Every double point v has a “nice” neighborhood Nv homeomorphic to the one shown
in a). b) shows the 3 perfect matchings on set of the four half-edges incident to v.

Note that these are really to be understood as matchings on the abstract set of half-edges
incident to a vertex v in the abstract multigraph G(c). A drawing of G(c) such as the one
given by c defines a local rotation at v. If such a local rotation is given (and the visual
representation in Figure 2.2b) does define a local rotation) we can call a matching
touching iff the matched half-edges are next to each other in the local rotation (as in the
first two cases in Figure 2.2b). Otherwise we call the matching crossing (the last case in
Figure 2.2b). This is the type of a matching, and it is given by the drawing d of the
multigraph G(c). We will now seek to classify the matching according to how the graph is
traversed, which is given by the Euler tour τ or equivalently by the chord diagram C.

The “nice” neighborhood Nv has the property that c−1(Nv) has two components. We call
the two curves given by the restriction of c to these components, respectively, the local
segments of c at v. Each local segment of v consists of (the end-pieces of) two half-edges
incident with v. Thus, the local segments of a curve define a perfect matching on the four
half-edges at every vertex v. We call this matching the local matching of v. The local
segments of the double points in our example from Figure 2.1 are shown in Figure 2.3a).
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The two half-edges belonging to one local segment of v are both incident to the same end-
point of the chord v in the chord diagram as Figure 2.3b) shows. For the Euler tour τ this
means that half-edges h1, h2 are matched by the local matching at v iff they are next to
each other in τ and share vertex v.

Figure 2.3. a) The two local segments in the neighborhoods of each double point of our example
are shown in different colors. b) In general the local matching at a chord v is given by the chord
diagram. The two arcs with square ends represent the edges of the local matching.

As already indicated by our example in Figure 2.3a), we will represent the three possible
local matchings at a given double point by the symbols shown in Figure 2.4.

Figure 2.4. We represent the 3 possible local matchings at a given double point by these sym-
bols.

If c−1(Nv) has two components, so has the complement S1 \ c−1(Nv). This time, we call
the two curves given by the restriction of c to these components the global segments of
c at v. The perfect matching on the half-edges incident with v given by the global seg-
ments is called the global matching of v. Again the global segments and the global
matching are given by the chord diagram as shown in Figure 2.5: the global segments are
the two components of the rim of the chord diagram after removing the 4 half-edges inci-
dent with v. Half-edges h1, h2 are matched by the global matching at v iff they are inci-
dent to different endpoints of the chord v and connected by a global segment.

Figure 2.5. The global matching and the global segments are given by the chord diagram.

Figure 2.5 also shows that the global segments can be used to characterize the interlace-
ment interlacement of double points v and w:
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2.1. v is interlaced with w � w lies on both of the global segments of v

An intuitive description of the role of the local and global matchings is the following:
While the local segments are the parts of c inside the neighborhood Nv, the global seg-
ments are the parts of c outside of the neighborhood Nv. Correspondingly, we can think
of the local matching as giving the pairs of half-edges that are “connected” by c on the
inside of Nv and we can think of the global matching as giving the pairs of half-edges that
are “connected” on the outside of Nv. Suppose we start at the point ph on c where the
half-edge h meets the boundary of Nv. We can now traverse c in two directions: contin-
uing inside Nv or outside Nv. If we traverse c inside of Nv, we will arrive at the point ph′

where the boundary of Nv meets the half-edge h′ that is matched with h locally. If we tra-
verse c outside of Nv, we will eventually return to Nv at the point ph′′ where the boundary
of Nv meets the half-edge h ′′ that is matched with h globally. Correspondingly, we use the
symbols shown in Figure 2.6 to represent the 3 possible global matchings at a given
double point.

Figure 2.6. We represent the 3 possible global matchings at a given double point by these sym-
bols.

Now, what happens if we change the local matching at a double point v and simply follow
the new one in our traversal? To answer this question we consider the effect of substi-
tuting each of the possible local matchings at z in our example (Figure 2.7). While 2.7a)
and 2.7b) give the image of a single curve, 2.7c) gives the images of two curves. We say
2.7c) is disconnected.

a) b) c)

Figure 2.7. The 3 possible local matchings at z give rise to curves a) and b) and the pair of
curves c).

The local and global matchings at z in each of the three cases are given in Figure 2.8. We
observe that in the case on the right the local and global matchings are the same.
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Figure 2.8. The local and global matchings at z in each of the three examples above.

It is immediate that this characterizes the disconnecting local matching in general.

2.2. Let c be a curve and v one of its double points. Let m be a perfect
matching on the half-edges incident with v. The result we obtain by substi-
tuting m as the local matching at v is disconnected, if and only if m is the
global matching of c at v.

It follows that of the three matchings at a double point, one is local and a different one is
global. We call the third matching the diagonal matching. Of course the diagonal
matching is also given by the chord diagram. The local, global and diagonal matchings of
a chord diagram C at a chord v are shown side-by-side in Figure 2.9.

Figure 2.9. The local, global and diagonal matchings at a chord v.

We now have classified the matchings at a double point with regard to two aspects:
according to their type in the drawing of c and according to the way they are traversed by
c. We now put these two classification in relation to one another. A double point is
locally touching iff the local matching is touching, it is locally crossing iff the local
matching is crossing, it is globally touching if the global matching is touching, and so
on.

2.3 Switches

The explanation given in the last section of what precisely it means to “substitute”
or “change” a local matching at a double was intentionally informal. We take a closer look
at this operation in section 2.9. For now, we will consider the simpler operation,
called “switch”, of replacing the local with the diagonal matching, which, by our observa-
tions above, does not “disconnect” the curve. This will induce an operation on chord dia-
grams (resp. interlacement graphs) that preserves realizability.
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Intuitively speaking, what is the effect of the switch at v on a curve? We simply take a
different turn at v and traverse one of the two global segments in the opposite direction as
before (Figure 2.10).

Figure 2.10. The effect of a switch on how a curve is traversed.

The switch at v swaps the local and diagonal matching at v. Thus, the switch at a fixed
double point v is an involution. Using our visual notation for local and global matchings
Figure 2.11 lists the effect of the switch operation in all cases.

lll

Figure 2.11. The effect of the switch operation on the local matching of a double point v, given
the global matching at that double point.

We will now give a formal definition of the switch operation. Let c = (G, d, τ ) be a curve
and v a double point of c. Let the Euler tour be of the form

τ = vh1 αh2vh3 βh4v

where the hi are the half-edges incident with v and α, β sequences of half-edges that corre-
spond to the two global segments of v. Now, the switch c ◦ v of c at v is defined as
c ◦ v: = (G, d, τ ′) where

τ ′ = vh2 α−1h1vh3 βh4 v

and α−1 is the reverse of α. This obviously defines a fixpoint-free involution. We also note
that the switch changes only the Euler tour, both the multigraph G as well as its drawing
d remain unaffected. As the pair (G, τ ) is synonymous with the chord diagram C(c) this
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definition automatically defines an operation on chord diagrams. Precisely because G and
d remain unaffected, this operation preserves the realizability of the chord diagram. It can
be visualized as shown in Figure 2.12.

h3

h4 h1

h2

β α β

h3 h1

h4 h2

α−1�
Figure 2.12. The effect of a switch on a chord diagram.

Does the switch at v change the interlacement of chords x and y?

2.3. Whether or not two given chords x and y are interlaced changes under a
switch at v changes, iff both are interlaced with v.

Proof. This proof is best done by example (see Figure 2.13), but the claim also follows
easily from the definition of τ ′.
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Figure 2.13. Switches and the interlacement relation: the interlacement graphs are shown below
the corresponding interlacement graphs.

�

We can also formulate 2.3 in terms of interlacement graphs. Given a graph G and a a set
X ⊂ V (G), the local complement G∆X of G with respect to X is the graph obtained
from G by toggling every edge in

(

X

2

)

, i.e. it is the graph on V (G) whose edge set is the

symmetrical difference E(G) ∆
(

X

2

)

.
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2.4. If c is a curve with interlacement graph Λ and v a double point, then the
interlacement graph Λ ◦ v of c ◦ v is Λ∆N(v) where N(v) is the neighbor-
hood of v in c.

Motivated by 2.4 we define Λ ◦ v 4 Λ ∆ N(v). Given this last definition, we can now sum-
marize our findings:

2.5. Switch Lemma

The switch at v, denoted ◦ v, is an involution on curves c, chord diagrams C

and interlacement graphs Λ, i.e.

c ◦ v ◦ v = c, C ◦ v ◦ v = C, Λ ◦ v ◦ v = Λ

Switches commute with C and I, i.e.

I(C(c ◦ v))=I(C(c) ◦ v)= I(C(c)) ◦ v

Switches preserve realizability, i.e.

C is realizable ⇔ C ◦ v is realizable
Λ is realizable ⇔ Λ ◦ v is realizable

Switches do not change the underlying multigraph G(c), i.e.

G(c ◦ v) = G(c)
G(C ◦ v) = G(C)

There are some pitfalls though:

• switches at different chords don’t commute, and

• if v is touching in c, v can be either crossing or touching in c ◦ v, depending on the
type of the diagonal matching as Figure 2.11 shows.

Note, however, that switching v has no effect on the type of another vertex w. Nonethe-
less, we have yet to do some work, before we fully understand the effect of the switch at v

on the type of v and thus the effect of switches in general on touch-, cross- and ϑ-realiz-
ability.

2.4 Criteria for Cross-Realizability

Switches transform one curve into another while allowing us to keep track of the associ-
ated chord diagrams. In particular, given a realizable chord diagram we can obtain other
realizable chord diagrams. This idea will accompany us through out the rest of this
chapter and it is closely related to each of the three criteria for cross-realizability we are
going to present.

Applying a switch operation to a crossing curve produces a touching double point. The
Lovász-Marx criterion pursues the idea of removing touching double points that arise from
the switch operation in order to preserve cross-realizability. De Fraysseix and Ossona de
Mendez transform a crossing curve into a touching curve by a series of switches, because
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touching curve are easier to characterize than crossing curves. The Rosenstiehl criterion
appears to be of an entirely different type as it does not take such an operational
approach. Nonetheless, it is closely related to the switch operation as the “Rosenstiehl
condition for cross-realizability” turns out to be “sort-of” an invariant of the switch opera-
tion.

Lovász-Marx Criterion

The idea is the following: From a crossing curve c, we can obtain other crossing curves
with fewer double points as indicated in Figure 2.14. If a vertex v is locally crossing, both
the global matching m1 and the diagonal matching m2 are touching. If we change the
local matching at v to m1, we obtain the drawing of two curves that touch at v as indi-
cated on the left-hand side of Figure 2.14. Each of these two curves, when considered by
itself, is crossing. We call the operation of obtaining one of these two curves from c the
loop removal. On the other hand, if we change the local matching at v to m2, i.e. if we
switch at v, we obtain a single curve c′ that is touching at v. Modifying the drawing of c′

in a small neighborhood of v we can remove the touching point (as shown on the right-
hand side of Figure 2.14) to, again, obtain a crossing curve. We call this operation the
switch deletion. We thus have obtained three crossing curves that each have fewer
double points than the original curve c, so that, in a sense, we can consider them to be
substructures of c. 	


Figure 2.14. Loop removal (left) and switch deletion (right).

What operations on chord diagrams do the constructions shown in Figure 2.14 induce?
Let C be the chord diagram of the curve c. The chord diagrams of the two curves
obtained via loop removal are given by the global segments of C at v, respectively. The
chords connecting the one segment with the other correspond to the points where the two
curves meet. The chords that have both end-points in the same segment correspond to
double points of the corresponding curve.

The chord diagram of the curve given by the switch deletion at v can be obtained by
deleting the chord v from C ◦ v. We use these observations to define the switch deletion
and the loop removal for chord diagrams such that, by construction, both observations on
chord diagrams preserve cross-realizability. Note that the effect of a loop removal on the
interlacement graph cannot be described in terms of the interlacement graph alone, as the
interlacement graph does not contain information about which pairs of vertices v1, v2

belong to the same global segment (see section 2.7).

We define a relation 6 on chord diagrams as follows: C1 6 C2 if C1 can be obtained from
C2 by a (possibly empty) sequence of loop removals and switch deletions. For a cross-real-
izable C2 all such C1 are cross-realizable as well. Can we characterize the cross-realizable
chord diagrams by giving a set of obstructions to cross-realizability under this relation?
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We start out with the following elementary observation.

2.6. Two curves c1 and c2 that have finitely many points in common cross each
other even many times.

Proof. The faces of c1 can be 2-colored as given in 1.12. We traverse c2 starting at a
point x in a face of color A. Whenever we cross c1, we change into a face of different color.
If we touch c1 the color stays the same. After completing our traversal we are back in the
face of color A and hence have crossed c1 even many times. �

From this we derive a lemma that is slightly more general than necessary right now, but
which will prove useful again later on.

2.7. Let c be a curve and v a double point. The number of crossing neighbors of
v is even if and only if v is globally touching.

In particular, if c is crossing then I(c) is even.

Here, the neighborhood of a chord v of a chord diagram or a double point v of a curve is
defined as the neighborhood of v in the corresponding interlacement graph. We say a
graph is even if every vertex has even degree.

Proof. Let s1 and s2 denote the global segments at v and let {h1, h2} and {h3, h4} be the
corresponding pairs of half-edges that are matched by the global matching at v. Now c1 =
s1 ∪ {h1, h2} and c2 = s2 ∪ {h3, h4} form closed curves that by 2.6 cross even many times.
The common points of c1 and c2 are the common points of s1 and s2 plus v itself. Note
that c1 and c2 cross at v, if and only if v is globally crossing in c. This means we have

#crossings of c1 and c2�
even

= #crossings of s1 with s2 +

{

1 if v is globally crossing
0 if v is globally touching

and as the crossing neighbors of v are precisely the crossings of the global segments the
first result follows. To see that I(c) has to be even if c is crossing, note that no vertex v

of c can be globally crossing as all vertices are locally crossing. �

We now have obtained a necessary criterion for the cross-realizability of a curve. A conse-
quence is that all K2n cannot be the interlacement graphs of a crossing curve. For a given
k, there is only one chord diagram C with I(C) = Kk and we denote it with CKk

. Its
Gauss code is 12� k12� k, see Figure 2.15.

Figure 2.15. The chord diagram CK5
that has K5 as its interlacement graph.
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Crossing curves realizing K2n+1 can be easily constructed (see Figure 2.16). We start at a
point x1 in the plane and draw a simple circle in clockwise orientation, such that x1

becomes our first double point. We continue from x1 in the unbounded face, following the
circle in clockwise direction. We then cross into the bounded face, creating a crossing x2.
We cross back into the unbounded face at x3 and so forth. After x2, � , x2n+1 we have
crossed the circle even many times and are thus back in the unbounded face. We can now
close our curve by moving to x1 such that x1 is locally crossing.

x1 x2

x3

x4

x5x6

x7

x8

x9

Figure 2.16. A realization of K9 that can be generalized to a realization of any K2n+1.

2.8. The interlacement graph Ki is cross-realizable if and only if i is odd.

The set {CK2n
: n > 1} presents itself as a set of obstructions to cross-realizability. The

Lovász-Marx Criterion states the chord diagrams not having any CK2n
as 6 -minor are

precisely the cross-realizable chord diagrams. We have already seen that this is necessary.

2.9. Lovász-Marx Criterion for Cross-Realizability

A chord diagram C is cross-realizable if and only if CK2n

 C for all n > 1.

We will give a proof of 2.9 in section 2.7. Note that the set of obstructions {CK2n
: n > 1} is

minimal with respect to inclusion: loop removal at any vertex of CK2n
yields the empty

chord diagram which is cross-realizable and switch deletion yields the chord diagram
shown in 2.17b) which can be cross-realized as shown in Figure 2.17c).

a) b) c)

Figure 2.17. a) CK6
b) CK6

◦x \ x for any chord x. c) A realization of CK6
◦ x \ x.
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De Fraysseix-Ossona de Mendez Criterion

Switching a crossing vertex v turns is into a touching vertex. The types of the local
matchings of all other vertices of course remain unaffected by the switch. Hence, by suc-
cessively switching all crossing vertices v1, � , vk we can convert a curve c into a touching
curve c ◦ v1 ◦� ◦ vk with the same number of double points. Fortunately it is easy to char-
acterize touching curves.

2.10. Characterization of Touching Curves de Fraysseix, Ossona de Mendez

A chord diagram C is touch-realizable if and only if I(C) is bipartite.

Proof. In essence, the proof is given by Figure 2.18.

� � �
Figure 2.18. Constructing a bipartite chord diagram from a touching curve and vice versa.

Let C be a chord diagram with a bipartite interlacement graph Λ. Let (A, B) be a bipar-
tition of the chords. Draw C in the plane such that all chords of A are drawn inside the
rim and all chords of B are drawn outside the rim, such that no two chords cross. This is
possible because (A, B) is a bipartition of the interlacement graph, which means that two
chords in one class are not interlaced and hence can be drawn such that they do not cross.
We then contract the chords, “pulling” the rim along. After all the chords have been con-
tracted, the drawing of the rim is a touching curve with C as chord diagram.

Let c be a touching curve with chord diagram C and interlacement graph Λ. By 1.12 we
can color the faces of c with black and white such that no two faces of the same color
have a common curve segment in their boundary. We partition the touching points of c

into classes “black” and “white” as shown in Figure 2.19.

black white

Figure 2.19. Black and white touching points.

In a small neighborhood of every touching point v, we move the two curve segments
meeting at v apart and insert a chord between them. At every double point we thereby
join two faces of the same color. The chords of the black touching points now lie in the
white faces and the chords of the white touching points lie in the black faces. As the mod-
ified curve is now simple, it divides the plane into two faces, and since we only joined
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faces of the same color, the two faces we are left with are black and white. The modified
curve and the chords taken together form the chord diagram of c and no two chords of the
same color cross. Therefore the coloring gives us a bipartition of Λ. �

This immediately yields a criterion for the realizability chord diagrams and interlacement
graphs.

2.11. Criterion for the Realizability of Chord Diagrams

A chord diagram C with Λ = I(C) is realizable, if and only if there exists
some sequence of vertices v1,� , vk such that Λ ◦ v1 ◦� ◦ vk is bipartite.

Proof. Suppose c is a realization of C and v1,� , vk its crossing vertices, in any order. We
now switch at these vertices to obtain a curve c′ = c ◦ v1 ◦ � ◦ vk. This curve c′ is touching
because a switch at a crossing vertex v turns v into a touching vertex and has no effect on
the local matching of any other vertex w. By 2.10 Λ(c′)=Λ ◦ v1 ◦� ◦ vk is bipartite.

Conversely, let C, Λ and v1,� , vk be given such that Λ ◦ v1 ◦� ◦ vk is bipartite. Let c′ be a
touching realization of C ◦ v1 ◦� ◦ vk. Define c = c′ ◦ vk ◦� ◦ v1. Because switches are invo-
lutions and preserve realizability we have C(c) = C and we are done. Note that v1,� , vk do
not have to be crossing in c. �

By the same argument we immediately get a necessary criterion for cross-realizability,
which, unfortunately, is not sufficient.

2.12. Let C be a chord diagram with chords v1,� , vn.

C is cross-realizable ⇒ C ◦ v1 ◦� ◦ vn is touch-realizable (2.1)
C is cross-realizable : C ◦ v1 ◦� ◦ vn is touch-realizable (2.2)

Proof. We have already seen that the touch-realizability of C ◦ v1 ◦� ◦ vn is necessary for
the cross-realizability of C. However, this is not sufficient as the example in Figure 2.20
shows. The chord diagram C = xyxy is touch realizable because I(C) = K2 is bipartite,
but C ◦ y ◦x =xyxy =C is not cross realizable as we know from 2.8.�◦x �◦y

y
x x

y
x

y

Figure 2.20. C ◦ y ◦ x= C ◦ y =C

�

The proof of 2.12 is complete, but some further insight as to what is going on is desirable.
Suppose we pick a touch-realization c′ of C ◦ y ◦ x. We can of course compute a curve c ′ ◦
x ◦ y with C(c′ ◦ x ◦ y) = C(c′) ◦ x ◦ y = (C ◦ y ◦ x) ◦ x ◦ y = C, so C is realizable. The
problem is that we do not know which double points of c ′ ◦ y ◦ x are crossing and which
are touching. Consider the example in Figure 2.21. On the left we have such a touch real-
ization c′ of C ◦ y ◦ x and switching x we obtain the curve in the middle in which x is
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crossing and y is touching. However, the global matching of y is crossing and its diagonal
matching is touching. Hence, if we now switch y, the case in the center of Figure 2.11
applies and y remains touching in the curve on the right hand side. (Recall that a switch
at v interchanges the local and the diagonal matchings of v.)

yxyxyx

�◦y�◦x

C ◦ y ◦x C ◦ y C

Figure 2.21. Switching the double points of a touching curve does not always yield a crossing
curve.

The problem therefore is that given a chord diagram C and type function ϑ telling us
which chords are supposed to be (locally) crossing and which are supposed to be (locally)
touching, we do not know what the types of the diagonal matchings of the touching
double points of a ϑ-realization of C are. Hence, we have no control over how the types of
the touching double points change under the switch operation. To resolve this, we will
introduce the notion of augmented chord diagrams in section 2.5. But first, we will com-
plete our survey of the three characterizations of cross-realizability we want to present.

We know from 2.7 that a cross-realizable chord diagram necessarily has an even interlace-
ment graph. The chord diagram from Figure 2.20, however, does not have an even inter-
lacement graph. It turns out that combining the necessary conditions from 2.7 and 2.12
with 2.10 yields a sufficient condition. We will see that 2.13 is sufficient during our study
of augmented chord diagrams.

2.13. De Fraysseix-Ossona de Mendez Criterion for Cross-Realizability

Let C be a chord diagram with interlacement graph Λ and vertices v1,� , vn.
C cross-realizable if and only if Λ is even and Λ ◦ v1 ◦� ◦ vn is bipartite.

This formulation of the de Fraysseix-Ossona de Mendez Criterion is due to Godsil and
Royle [5]. In [3] de Fraysseix and Ossona de Mendez used a different form of switch opera-
tion to formulate their theorem.

Note that if we want to check the cross-realizability of a given chord diagram C, both the
Lovász-Marx and the de Fraysseix-Ossona de Mendez characterizations require us to com-
pute switches of C or respectively of its interlacement graph Λ. This is easy enough for a
concrete diagram C or a concrete graph Λ. But if we do not have complete information
about these objects, that is if we do not know whether two chords x, y are interlaced in C

(whether they are adjacent in Λ) or not, it becomes very difficult to deduce something
about the structure of C ◦ v1 ◦ � ◦ vk or Λ ◦ v1 ◦ � ◦ vk. The reason is that the effect of
switching vi is determined by N(vi), but switching at another vertex vj may change N(vi).

48 Characterizations of Curves



These observations make the Rosenstiehl Criterion of interest, because it does not rely on
any form of switch operation.

Rosenstiehl Criterion

Let v, w denote vertices of an interlacement graph Λ. If Λ is the interlacement graph of a
crossing curve, all vertices in the common neighborhood of N(v)∩N(w) are crossing. The
parity of the common crossing neighborhood is a quantity that will be of great interest to
us. We a say a pair of vertices v, w is even if their common crossing neighborhood is even
and we say v, w are odd if it is odd. In particular we can apply these terms to edges of Λ.

2.14. Rosenstiehl Criterion for Cross-Realizability

An interlacement graph Λ is cross-realizable, if and only if all of the fol-
lowing conditions hold:

i. Λ is even.

ii. If vertices v, w of Λ are not interlaced, the pair v,w is even.

iii. The set of even edges forms a cut in Λ.

There are several things to note about this criterion. First of all, if we let v = w then ii.
reduces to the statement that Λ is even, so condition i. is redundant. We listed i. sepa-
rately, because it is easiest to digest and we have already seen that it is necessary. Using
a similar argument we can show that ii. is necessary as well.

Proof that 2.14.ii. is necessary. If v � w are not interlaced in c, one global segment of
v does not meet w and vice versa. In Figure 2.22 these two segments s1, s2 are on the left
and right hand side. Using appropriate local segments at v and w, we can form two closed
curves c1 and c2, that have to cross even many times. However, the neighbors of v are pre-
cisely the crossings of the one global segment at v with the other, so the common neigh-
bors of v and w are simply the crossings of s1 with s2.

a) b)

Figure 2.22. The common neighbors of two non-interlaced chords are precisely the points the
two dashed segments of the curve have in common.

For vertices v = w lemma 2.7 states that ii. is necessary. �

As we have seen the essence of i. and ii. is the fact 2.6 that two curves cross each other
even many times. However, this argument cannot be applied if v and w are interlaced. To
understand iii. we will have to make use of a different geometric insight.
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iii. states that the vertices of Λ can be partitioned into two classes A, B such that two
interlaced vertices v, w are of the same class if and only if their common crossing neigh-
borhood is odd. This is noteworthy insofar as our criterion for touch-realizability also
required the existence of a bipartition of the vertex set. Instead of giving a proof that iii.
is necessary, we will provide a geometric interpretation of this bipartition in the case of
crossing curves.

Again the bipartition of the double points of a curve is directly related to the bipartition
of its faces given by a proper coloring of the faces with black and white. Consider Figure
2.23. a) shows an example of a crossing curve. b) shows the corresponding chord diagram
along with the two classes of chords as given by the Rosenstiehl Criterion. c) shows the
interlacement graph in which the even edges form a cut. Let us now single out the double
points marked x and y. Small neighborhoods around each are shown in d) and e), respec-
tively, along with the corresponding global matching. The half-edges matched by the
global matching at x “share” a black face while the half-edges matched by the global
matching at y “share” a white face. This is not an accident: it will turn out that this is
precisely what characterizes the two classes in the Rosenstiehl bipartition. In the next sec-
tion we will introduce the concept of an augmented chord diagram to capture this differ-
ence between x and y.

a) b) c)

d) e)

y

x

x

x

y

y

x

y

yx

Figure 2.23. a) A crossing curve c. b) The chord diagram C(c). The chords belonging to the one
class of the Rosenstiehl bipartition are dashed, and those belonging to the other class are solid. c)
The interlacement graph I(c). Even edges are dashed. d) The local and global matching at x

along with the colors of the faces in a small neighborhood of x. The faces between the half-edges
matched by the global matching are black. e) The local and global matching at y. The faces
between the half-edges matched by the global matching are white.
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A few words on the history of the Rosenstiehl Criterion. Rosenstiehl’s original proof [9] of
2.14 builds on the theory of maps. He also gives the geometric interpretation of the bipar-
tition mentioned above, although he presents it in an entirely different fashion. In [3] de
Fraysseix-Ossona de Mendez give a simpler proof of 2.14 that is based on (a variant of)
the switch operation. Following their approach and using our new concept of augmented
chord diagrams, we will now proceed as follows: In section 2.5 we will introduce aug-
mented chord diagrams and give a criterion, 2.20, for their realizability in terms of the
switch operation. This is a generalization of the de Fraysseix-Ossona de Mendez Criterion
insofar as it characterizes curves that can have both touching and/or crossing double
points. In section 2.6 we will then prove corresponding generalization of Rosenstiehl’s the-
orem. In section 2.7 we derive the Lovász-Marx Criterion from the Rosenstiehl Criterion
as given in [1]. In preparation for section 2.6 we will now give a very compact formulation
of the Rosenstiehl Criterion that is also from [3]. By our above observations it is imme-
diate that 2.14 and 2.15 are equivalent.

2.15. Rosenstiehl Criterion – Compact Version

An interlacement graph Λ is cross-realizable, if and only if there exists a
bipartition (A, B) of the vertices such that for all vertices v, w the following
holds:

the pair v, w is odd� v, w are interlaced and of the same class

2.5 Augmented Chord Diagrams

Let us summarize some of our findings so far.

• A curve can be interpreted as a multigraph G, with a rotation system π and an
Euler tour τ . Chord diagrams correspond to pairs (G, τ). We have yet to find a fit-
ting representation of π in the context of chord diagrams.

• A chord diagram C and correspondingly a pair (G, τ ) define a local, a global, and a
diagonal matching at every double point v.

• The switch operation turns crossing vertices into touching vertices, but we have no
control over when a touching vertex becomes crossing. This is the last obstacle to a
proof of the de Fraysseix-Ossona de Mendez Criterion for cross-realizability

• The faces of a curve can be 2-colored. This coloring partitions the touching vertices
as well as the crossing vertices of a curve into two classes. These bipartitions play a
central role in the de Fraysseix-Ossona de Mendez and Rosenstiehl Criteria for
touch- and cross-realizability.
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We are now going to put all of the above together by defining a new object called the aug-
mented chord diagram.

The faces of c can be colored with black and white. Given such a 2-coloring, the rule
shown in Figure 2.24 defines a 3-coloring of the matchings at every vertex with the
colors “black”, “white” and “crossing”. Changing the 2-coloring of the plane swaps the
colors black and white, therefore we identify colorings in which black and white have been
interchanged at every vertex. The 3-coloring of the matchings is then uniquely determined
by the curve c. More precisely it is uniquely determined by the induced graph G and its
embedding d in the plane. How c traverses G is irrelevant.

a) b) c)

Figure 2.24. The a) white, b) black and c) crossing matching.

A curve c thus defines two 3-colorings of the 3 perfect matchings at every double point.
The one with the colors “local”, “global” and “diagonal” is given the interlacement proper-
ties of c, i.e. by the multigraph G and the Euler tour τ . The one with colors “black”,
“white” and “crossing” is given by the geometry of the curve, i.e. by the multigraph G and
its rotation system π. The pair (G, τ ) is determined by the chord diagram C while π is
not. We now augment C with information about the geometry of c.

We denote the set of perfect matchings on th half-edges incident with a double point v by
Mv. An augmented chord diagram (C, (av)v) is a chord diagram C together with a
family (av)v a chord of C of bijections

av:Mv→{“crossing”, “black”, “white”}

Here we identify families (av)v and (s ◦ av)v, where s is the bijection s: {“crossing”, “black”,
“white”}→ {“crossing”, “black”, “white”} that swaps black and white – just as we identified
rotation systems (πv)v and (πv

−1)v. Note that as C defines a bijection between Mv and
{“local”, “global”, “diagonal”}, we can equivalently regard (av)v as a family of bijections

av: {“local”, “global”, “diagonal”} → {“crossing”, “black”, “white”}

and we will use both representations interchangeably. We call the family a = (av)v as well
as the pair (C, a) an augmentation of C and we write A(c) for the augmented chord
diagram of a curve c.

2.16. The augmented chord diagram A(c) of a curve c is well defined.
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Proof. The (equivalence class of a) curve c has a unique rotation system, which in turn
defines the dual graph G(c)∗ uniquely. G(c)∗ is bipartite and connected, and hence the
bipartition (A, B) of G(c)∗ is uniquely determined up to the identification of (A, B) with
(B,A) which corresponds to our identification of (av)v with (s ◦ av)v. �

The augmented chord diagram of the example in Figure 2.2 is given in Figure 2.25.

x y z

local black white crossing
global crossing black black

diagonal white crossing white
z

a) c)

x

y z

x

b)

y

y

x

z

Figure 2.25. a) A curve. b) Its chord diagram. c) Its augmentation.

We have already defined what it means for a double point to be “locally crossing”, “glob-
ally touching”, etc. In addition we now say that a double point v is locally black iff
av(local) = black, that v is globally white iff av(global) = white, etc. Thus, a double
point v is crossing iff it is locally crossing, and v is touching iff it is locally black or locally
white. A pair of a chord diagram C and a type function ϑ is thus augmented by (av)v iff
av(local) = crossing ⇔ ϑ(v)= crossing.

We say an augmented chord diagram (C, a) is realizable, iff there exists a curve c such
that (C, a) = A(c). This is a much stronger concept then the concept of realizability for
chord diagrams. In particular the color of the local matching is given for every double
point v, which determines whether v is crossing or touching. So, given a chord diagram C,
a type function ϑ and an augmentation a of the two, realizability of (C, a) implies ϑ-real-
izability of C but not vice versa.

Now, the augmentation a in the pair (C, a) has the role of the rotation system π in the
triple (G, π, τ). We will study the relationship between augmentations and rotation sys-
tems in detail in section 2.8. In particular we will see that for every realizable augmented
chord diagram (C, a) there is exactly one equivalence class c of curves realizing (C, a).

Augmented Chord Diagrams and Switches

Let us consider the effect of a switch on an augmented chord diagram. During a switch
the underlying graph and its embedding remain the same, only the tour through the
graph changes. Therefore the coloring given by the embedding of the graph remains the
same and so we have to concentrate on the coloring given by the tour. Let A be an aug-
mented chord diagram and x the chord we switch. As Figure 2.26 shows, the local and
diagonal matchings of x are interchanged. The global matching then has to remain the
same.

2.5 Augmented Chord Diagrams 53



x

x

x

x

�◦x

Figure 2.26. The switch at a chord x swaps the local and diagonal matchings at x.

Let y be some chord interlaced with x. As Figure 2.27 shows, the global and the diagonal
matchings are interchanged. The local matching remains unchanged.

�◦x

x

x

x

yyy y

x

Figure 2.27. The switch at a chord x swaps the global and diagonal matchings of every chord y

that is interlaced with x.

Finally, for a chord z different from but not interlaced with x, all three matchings do not
change. These observations allow us to give the augmentation of A(c ◦ x) in terms of the
augmentation of A(c) for any curve c. If (av)v is the augmentation of A(c) the augmenta-
tion (av

′ )v of A(c ◦x) is given by

av
′ (local) =

{

av(diagonal) if x = v

av(local) otherwise

av
′ (global) =

{

av(diagonal) if x, v are interlaced
av(global) otherwise

av
′ (diagonal) =







av(local) if x = v

av(global) if x, v are interlaced
av(diagonal) otherwise

For an augmented chord diagram A, we define the augmentation of A◦ x to be (av
′ )v. Note

that this again yields an involution as can be seen from Figures 2.26 and 2.27. We can
now formulate a version of the Switch Lemma for augmented chord diagrams, which,
although trivial to prove, is more powerful than the original Switch Lemma, because the
concept of realizability is much more restrictive for augmented chord diagrams.
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2.17. Augmented Switch Lemma

The switch at a double point v is an involution on the augmented chord dia-
grams, switches commute with A and

A is realizable ⇔ A◦ v is realizable

Proof. Because ◦ is an involution on augmented chord diagrams, we only have to show
that if A is realizable, so is A ◦ v. Let c be a realization of A. By construction A(c ◦ v) =
A(c) ◦ v =A◦ v, so c ◦ v is a realization of A ◦ v. �

Let C be a chord diagram with chords v1,� , vk and A = (C, (av)v) an augmentation. Sup-
pose A is locally crossing at all vertices. Then A ◦ vk ◦� ◦ v1 is locally touching at all ver-
tices and it is a consequence of 2.17 that

A◦ vk ◦� ◦ v1 is realizable ⇔ A is realizable (2.3)

Recall from 2.12 that this is not true for “ordinary” chord diagrams. We proved 2.12 by
applying our criteria for touch- and cross-realizability to the chord diagram C = xyxy. To
illustrate what is going on with an example (see Figure 2.21) we picked a touch realization
c′ of C ◦ y ◦ x and noted that when passing from c′ ◦ x to c′ ◦ x ◦ y, the chord y does not
become locally crossing because in c′ ◦ x it is globally crossing. Switching y only swaps the
local and diagonal matchings which are both touching.

What can we learn about this example from the point of view of augmented chord dia-
grams? In general, we have for any augmentation A of C =xyxy, that

ay
A◦y◦x(global) = ay

A◦y(diagonal)= ay
A(local)

ay
A◦y◦x(diagonal)= ay

A◦y(global)= ay
A(global)

ay
A◦y◦x(local)= ay

A◦y(local)= ay
A(diagonal)

We now claim:

2.18. A touching curve c is globally touching at every double point v.

Proof. We modify the local matching so that it equals the global matching, thus
obtaining two curves c1 and c2. These two do not cross outside v as c is touching. Hence,
because two curves cross each other even many times (cf. 2.10), they do not cross at v. �

To see that the example C = xyxy is not cross-realizable can proceed in several ways:
Keeping track of the augmentation of y we can argue that given a cross-realization of C,
y has to be globally crossing in C ◦ y ◦ x, so by 2.18 C ◦ y ◦ x cannot be touch-realizable.
We could also argue that by 2.18 y has to be diagonally crossing in a touch-realization of
C ◦ y ◦x and hence y will be globally crossing in C and not locally crossing as desired.
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Realizability

2.10 and 2.18 give us necessary criteria for the realizability of an augmented chord dia-
gram that is locally touching everywhere. Taking these two conditions together we obtain
a characterization.

2.19. Realizability of Touching Augmented Chord Diagrams

An augmented chord diagram that is locally touching at every chord is real-
izable if and only if

no two chords with the same local color are interlaced, and
every chord is diagonally crossing.

}

(2.4)

Proof. Suppose A is a realizable augmented chord diagram that is locally touching every-
where. Let c be a realization of A. From 2.10 we know that I(c) is bipartite, but from the
proof of 2.10 we know that the bipartition is given by the color of the local matchings. So
no two chords with the same local color can cross. From 2.18 we know that every chord is
diagonally crossing.

Given an augmented chord diagram A that the meets the conditions, we start by drawing
the chord diagram in the plane, coloring the inside of the circle black and flipping all the
locally black chords to the outside. Contracting all the chords gives us a touching curve in
which all the local matchings have the correct color. We still have to see that the other
matchings have the color given by A. Because, by construction, we have created a
touching curve, all its diagonal matchings are crossing as required. Given the local and
diagonal matchings at every chord, the global matching is uniquely determined. �

They key point here is that if A had a chord that was not diagonally crossing, the con-
struction from the proofs of 2.10 and 2.19 simply would not yield a curve with the correct
diagonal matching.

Note that the bipartition mentioned in 2.10 is given by the colors of the local matchings.
So if we are given an augmented chord diagram, 2.19 is easier to check than 2.10, because
we do not have to look for a bipartition, we only have to check the given one. If we are
only given the chord diagram and the constraint that all chords are supposed to be
touching, finding an augmentation as required in 2.19 may seem more difficult than
finding a bipartition as in 2.10. However, this is not the case: finding a bipartition is
equivalent to finding an augmentation, because the diagonal matching is given by (2.4). A
bipartition defines the color of the local matching and the global matching is then
uniquely determined.

We can now provide an algorithmic criterion for the realizability of arbitrary augmented
chord diagrams. Using augmented chord diagrams we can prescribe for every chord indi-
vidually whether it should be touching or not.
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2.20. Realizability of Augmented Chord Diagrams – Algorithmic Version

Let A be an augmented chord diagram and v1, � , vk the locally crossing
chords of A.

A is realizable ⇔ (2.4) holds for A◦ v1 ◦� ◦ vk

Proof. By 2.17, A is realizable iff A ◦ v1 ◦ � ◦ vk is realizable. By 2.19, A ◦ v1 ◦ � ◦ vk is
realizable iff (2.4) holds. �

Now, what does this criterion for the realizability of augmented chord diagrams tell us
about the ϑ-realizability of chord diagrams? To find out whether a given chord diagram C

and is ϑ-realizable for a given type function ϑ, we could, of course, enumerate all augmen-
tations A of (C, ϑ) and use 2.20 to check if any of those is realizable. But as there are

more than 2#chords augmentations of (C, ϑ) this would be horribly inefficient. The algo-
rithm to apply is the following: We are given C and ϑ. If (C, ϑ) is realizable we want to
compute an augmentation (av)v realizing (C, ϑ). If (C, ϑ) is not realizable, we want to
obtain a proof of this fact. To that end, we introduce variables av

m for each chord v and
each m∈{local, global, diagonal} and proceed as follows:

1. Let v1, � , vk denote the chords with ϑ(vi) = crossing, in any order. Assign avi

local: =
crossing for every such vi.

2. Put av(m) = av
m for every v and m.

3. Compute (C ′, (av
′ )v)= (C, (av)v) ◦ v1� ◦ vk.

4. If there is a chord v with av
′ (global) = crossing, C is not ϑ-realizable. Otherwise:

− For every v with ϑ(v)= crossing, we have av
′ (diagonal)= crossing.

− For all other vertices w, we have aw
′ (diagonal) = aw

m for some m and assign
aw

m4 crossing.

5. Compute a bipartition of the chords of C ′, i.e. a 2-coloring in which chords of the
same color are not interlaced.

− If such a bipartition does not exist, C is not ϑ-realizable.

− Otherwise, let A, B be such a bipartition. For every vertex v we have
av
′ (local) = av

m for some m. We now assign

av
m: =

{

black, if v ∈A

white, if v ∈B

6. For each v, we have at this point assigned values to exactly two of the variables

av
local, av

global, av
diagonal and these two values differ. We now assign the third value to

the third variable. This defines an augmentation of C that is ϑ-realizable.
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Note that any realizable augmentation of (C, ϑ) uniquely determines the rotation system
and thus the equivalence class of a realization. See section 2.8 for details.

The above algorithm also has one important theoretical consequence:

2.21. Let C be a chord diagram, ϑ a type function and v1, � , vk the crossing
chords of (C, ϑ). C ◦ v1 � ◦ vk is bipartite if and only if there exists an aug-
mentation A of (C, ϑ) with the property that in A ◦ v1 � ◦ vk no two chords
of the same color are interlaced.

Proof. If there exists such an augmentation, then a bipartition of C ◦ v1� ◦ vk is given by
the colors of the local matchings in A ◦ v1 � ◦ vk. Conversely, given a bipartition of C ◦
v1� ◦ vk we simply run the algorithm, do not abort in step 4. even if we encounter a glob-
ally crossing vertex, and use the bipartition defined in step 5. �

Now, if we interpret 2.20 as a criterion for cross-realizability, it is very similar to the de
Fraysseix-Ossona de Mendez Criterion for cross-realizability as formulated by Godsil and
Royle (i.e. 2.13). The difference is that in 2.20 the augmented chord diagram A ◦ v1 � ◦ vn

is required to be diagonally crossing everywhere, while in 2.13 Λ is required to be even.
Therefore, can we give derive 2.13 from 2.20?

How can we interpret the requirement that every chord of A ◦ v1 � ◦ vk is diagonally
crossing? We observe that vi is locally crossing in each of the augmented chord diagrams
A, � , A ◦ v1 � ◦ vi−1 and it becomes diagonally crossing in A ◦ v1 � ◦ vi. After that, we
have for any j > i that the global and diagonal matchings at vi are interchanged in the
step from A ◦ v1� ◦ vj−1 to A ◦ v1� ◦ vj if and only if vi and vj are interlaced in A ◦ v1� ◦
vj−1. We call a step with this property an inversion of vi. Now, vi is diagonally crossing in
A ◦ v1 � ◦ vk if and only if vi is inverted even many times. All we need to complete the
proof of 2.13 is to show that all chords vi are inverted even many times if Λ is even. We
will postpone this proof until the end of section 2.6, though, since the material developed
there will turn out to be useful for this purpose.

We will now seek to develop a Rosenstiehl-type criterion for augmented chord diagrams.

2.6 A Combinatorial Characterization

We have yet to define a notion of “class” for curves with locally crossing double points. If
x is touching, the class is given by the color of the local matching. What if x is crossing?
As motivated in section 2.4, we define the class of a locally crossing double point x to be
the color of the diagonal matching. Recall that the colors of the local and diagonal match-
ings of x are interchanged by a switch at x, so the class of x does not change under a
switch at x, unless x is globally crossing. Given this definition, the class of every double
point is either “black” or “white”.
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We can now formulate a Rosenstiehl-type criterion that applies to arbitrary curves, i.e.
curves with crossing and/or touching double points. Again, we call a chord x even iff the
number of crossing neighbors is even and odd otherwise. We call a pair x, y of chords
even iff the number of common crossing neighbors is even, and odd otherwise.

2.22. Realizability of Augmented Chord Diagrams – Combinatorial Version

An augmented chord diagram A is realizable if and only if both of the fol-
lowing conditions hold:

i. A chord x is odd, if and only if x is globally crossing.

ii. Two chords x� y are odd, if and only if x, y are interlaced and of the
same class.

Note that both the Rosenstiehl Criterion 2.14 (resp. 2.15) for cross-realizability of chord
diagrams as well as our criterion 2.19 for the realizability of touching augmented chord
diagrams are special cases of 2.22.

Proof of 2.19 from 2.22. If A is touching, the number of crossing neighbors of x is
always zero and hence even, so i. reduces to the condition that all chords are diagonally
crossing. By the same argument ii. reduces to the condition that no chords x and y are
interlaced and of the same class. These are just the conditions of 2.19. �

We will not be able to obtain 2.19 in this fashion, though, as we are going to make use of
2.19 in our proof of 2.22. However, the above motivates 2.22 nicely. The derivation of the
Rosenstiehl Criterion from 2.22, on the other hand, is of greater consequence, as we have
not given a proof of that one yet.

Proof of 2.14 from 2.22. If A is crossing, i. simply states that every chord x has even
many neighbors which is part of the Rosenstiehl Criterion. Condition ii. reduces to the
statement that two chords x and y have an odd neighborhood, if and only if they are
interlaced and of the same class. If we split this statement by regarding interlaced and
non-interlaced pairs of chords separately, we obtain precisely the Rosenstiehl conditions:
For chords x and y that are not interlaced, the common neighborhood is even. Interlaced
chords on the other hand have an odd common neighborhood, if and only if they are of
the same class, which means that the even edges form a cut in the interlacement graph.

One fine point here is that the Rosenstiehl Criterion requires the existence of some parti-
tion of the chords into two classes with the given properties, while 2.22 requires that the
specific partition defined at the beginning of this section has the given properties. The dif-
ference is of course that 2.22 talks about augmented chord diagrams, while the Rosenstiehl
Criterion does not. If we want to show that the Rosenstiehl condition is sufficient using
2.22, we start out with a chord diagram C that meets the condition. The even edges form
a cut in I(C) which defines a bipartition X, Y of the set of chords. An augmentation
(av)v of C is then defined by av(local)= crossing and

av(diagonal) av(global)
v ∈X black white
v ∈Y white black
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for each chord v. The augmented chord diagram (C, (av)v) then meets the condition of
2.22 as described.

If we want to show that the Rosenstiehl condition is necessary, we obtain an augmented
chord diagram (C, (av)v) from the given curve, and by 2.22 we know that the even edges
form a cut, whose bipartition of the set of chords is given by the diagonally black and the
diagonally white double points. �

Our criterion for the realizability of augmented chord diagrams thus provides us explicitly
with a combinatorial interpretation of the bipartition of the set of chords mentioned in the
Rosenstiehl characterization of crossing curves. Going through Rosenstiehl’s original proof
of his theorem carefully yields the same interpretation.

We will now turn to the proof of 2.22. It consists of these four steps:

1. The theorem holds for touching augmented chord diagrams as we have already
seen.

2. Every augmented chord diagram A can be converted into a touching augmented
chord diagram by a sequence of switches ◦ v1� ◦ vk.

3. We will show that the condition of 2.22 is invariant under switches.

4. We complete the proof as follows:

A is realizable

⇔ A◦ v1� ◦ vk is realizable

⇔ the condition of 2.22 holds for A◦ v1� ◦ vk

⇔ the condition of 2.22 holds for A

This is the approach taken by de Fraysseix and Ossona de Mendez in [3] in their proof of
Rosenstiehl’s theorem. As in their proof, showing the invariance of our condition under
switches will be simply a matter of calculation. In this more general setting, however, the
calculation will be more involved.

We will first write the condition of 2.22 as a system of equations P (C)≡ 0 over Z2, which
is in essence a boolean expression. To that end we will associate with a given augmented
chord diagram A a set of boolean predicates. Each is 1 if the statement in the square
brackets is true and 0 if it is false. For chords x, y we define

gx = [ax(global) = crossing]

ℓx = [ax(local)= crossing]

cx = [the class of x is white]

ix,y = [x and y are interlaced]

δx,y = [x = y]

We will also consider the incidence vector Nx of the crossing neighborhood of x, i.e.

Nx =(ix,y · ℓy)y a chord of A
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Given this definition, we have

〈Nx, Ny〉 : =
∑

z a chord of A

ix,z · ℓz · iy,z · ℓz = #common crossing neighbors of x and y

We can now write the characterization of realizable augmented chord diagrams as a
system of equations.

2.23. Realizability of Augmented Chord Diagrams - Equational Version

An augmented chord diagram A is realizable if and only if for all chords x, y

the following equation holds:

〈Nx, Ny〉+ ix,y · (cx + cy +1) + δx,y · gx≡ 0 (2.5)

We write P (A)≡ 0 to denote that all of these equations hold for A.

We first have to see that 2.23 is equivalent to 2.22. Note that addition and multiplication
over Z2 are simply the boolean operations “exclusive or” and “and”, respectively. Hence an
equation of the form a + b ≡ 0 is equivalent to the boolean expression a ↔ b (i.e. “a is
equivalent to b”) and an equation of the form a + b≡ 1 is equivalent to a ∨̇ b (i.e. “either a

or b”). The expression (cx + cy +1) in (2.5) is therefore 1 iff cx and cy have the same value.

Considering the cases x = y and x � y separately, we can thus reformulate (2.5) as follows.
If x = y, x is not interlaced with y, so (2.5) reduces to

〈Nx, Nx〉+ gx≡ 0

which is precisely 2.22.i. If x� y, (2.5) reduces to

〈Nx, Ny〉+ ix,y · [x and y are of the same class]≡ 0

which is precisely 2.22.ii. Our task is now to show the following lemma:

2.24. Let A denote an augmented chord diagram and x any chord of A. Then

P (A)≡ 0 ⇔ P (A◦ x)≡ 0

As outlined above, we can then complete our proof of 2.22 using 2.24.

Proof of 2.22. Let c be any curve and A its chord diagram. Let v1, � , vk be the crossing
vertices of c. The curve c ◦ v1 ◦ � ◦ vk and hence A ◦ v1 ◦ � ◦ vk are realizable and by 2.19
the equation P (A◦ v1 ◦� ◦ vk)≡ 0 holds. By 2.24 the equation P (A)≡ 0 follows.

Conversely, let A be an augmented chord diagram for which the condition of 2.22 and
thus P (A) ≡ 0 hold. Let v1, � , vk be the crossing vertices of A. By 2.24 we have P (A ◦
v1 ◦ � ◦ vk) ≡ 0 and by 2.19 there exists a realization c′ of A ◦ v1 ◦ � ◦ vk. By the Aug-
mented Switch Lemma c ′ ◦ vk ◦� ◦ v1 is then a realization of A. �

To be able to calculate whether 2.24 holds, we need to calculate the parameters gx
A◦x,

ix,y
A◦x, cx

A◦x and 〈Nx
A◦x, Ny

A◦x〉 of A ◦ x given the corresponding parameters of A. This is the
combinatorial part of the proof of 2.24.
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2.25. Let A be an augmented chord diagram and let N , i, g, ℓ, δ, c be the parame-
ters of A as defined above. We denote the parameters of A ◦ x by the same
symbols with an upper index. Then, the following equations hold:

Ny
A◦x ≡ Ny + ix,y · (Nx + (gx +1) ·x + ℓy · y)

gy
A◦x ≡ gy + ix,y · (ℓy +1)

ℓy
A◦x ≡ ℓy + δx,y · (gy +1)

cy
A◦x ≡ cy + ix,y · ℓy + δx,y · gx

iy,z
A◦x ≡ iy,z + ix,y · ix,z · (δy,z +1)

Proof of 2.25. Ny
A◦x≡Ny + ix,y · (Nx +(gx + 1) ·x + ℓy · y)

Note that in this first equation, Nx, Ny, x, y are vectors in Z2
#chords of A which we interpret

to be characteristic vectors of the corresponding sets. The addition then corresponds to
the symmetrical difference.

Now, the crossing neighborhood of y changes only if ix,y = 1. In the case that x and y are
interlaced, the crossing neighborhood of y in A ◦ x is precisely the symmetrical difference
of Nx and Ny with two exceptions:

• x∈Ny
A◦x iff it is locally crossing in A◦x.

◦ If x is locally crossing in A, it is in Ny but not in Ny
A◦x.

◦ If x is diagonally crossing in A, it is in Ny
A◦x but not in Ny.

◦ If x is globally crossing in A, it is neither in Ny nor in Ny
A◦x.

We thus have to add an additional x iff x is not globally crossing in A.

• y � Ny
A◦x. Nx contains y iff y is locally crossing in A, so we have to add an addi-

tional y iff that is the case.

gy
A◦x≡ gy + ix,y · (ℓy +1)

The global matching of y changes if and only if y is interlaced with x and in that case it
is interchanged with the diagonal matching. Hence, whether the global matching of y is
crossing or not changes, if and only if x and y are interlaced and y is not locally crossing.

ℓy
A◦x≡ ℓy + δx,y · (gy +1)

The only local matching a switch at x changes is the local matching of x itself. As the
local matching is interchanged with the diagonal matching, whether or not a chord y is
locally crossing changes, if and only if y = x and the crossing matching is not the global
matching.

cy
A◦x≡ cy + ix,y · ℓy + δx,y · gx
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Recall that the class is given by the local matching, or, if that is crossing, by the diagonal
matching. We have three cases to analyze:

• ix,y = 1 and δx,y = 0. The global and diagonal matchings of y are interchanged.
Thus, the class of y changes iff it is determined by the diagonal matching, i.e. iff y

is locally crossing.

• ix,y =0 and δx,y =0. The matchings of y do not change.

• ix,y = 0 and δx,y = 1. The switch at x interchanges the local and diagonal matchings
of x. If either was crossing, the class does not change, by definition. If the global
matching is crossing, the class does change.

iy,z
A◦x≡ iy,z + ix,y · ix,z · (δy,z +1)

Consider the following case analysis:

• y = z. y and z are not interlaced and this does not change as guaranteed by the
δy,z in the equation.

• x= y� z. The interlacement of x = y and z does not change as ix,y = 0.

• x � y � z � x. The interlacement of y and z changes if and only if both are inter-
laced with x. �

The rest of the proof is just a matter of calculation: in essence we substitute all the equa-
tions from 2.25 into P (A ◦ x), simplify the result by applying the distributive law and can-
celing terms (we are over Z2) and apply that P (A)≡ 0. This could be done by a computer
algebra system but the calculation is small enough so that we can do it by hand.

The usual approach to a proof of 2.24 would be to try a case analysis. While this is pos-
sible, the number of cases to consider would be large: the proofs of the equations in 2.25
already required several case analyses, many of the them according to different criteria.
While a proof via boolean algebra as presented below may appear of lesser aesthetic value,
it is less error-prone, easier to verify and far shorter than a case analysis with all details.
To support our claim about the length of this kind of proof, we will present the calcula-
tion in full detail, without leaving anything to the reader. This calculation concludes the
proof of theorem 2.22.

Proof of 2.24. Let A be an augmented chord diagram with P (A) ≡ 0. We seek to calcu-
late P (A ◦ x). The first step is the calculation of the parity of the common crossing neigh-
borhood of chords y and z in A◦x.

〈Ny
A◦x, Nz

A◦x〉

≡ 〈Ny + ix,y · (Nx +(gx +1) ·x + ℓy · y), Nz + ix,z · (Nx + (gx +1) ·x + ℓz · z)〉

≡ 〈Ny, Nz〉

+ ix,y · (〈Nx, Nz〉+(gx + 1)〈x, Nz〉+ ℓy〈y,Nz〉 )

+ ix,z · (〈Nx, Ny〉+(gx + 1)〈x, Ny〉+ ℓz〈z, Ny〉 )

+ ix,yix,z〈Nx +(gx + 1) ·x + ℓy · y, Nx +(gx +1) ·x + ℓz · z〉
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We now consider the last factor separately.

〈Nx + (gx +1) ·x + ℓy · y,Nx +(gx + 1) ·x + ℓz · z〉

≡ 〈Nx, Nx〉+ (gx +1)〈x, Nx〉+ ℓy〈y, Nx〉

+(gx + 1)〈Nx, x〉+ (gx +1)2〈x, x〉+(gx + 1)ℓy〈y, x〉

+ ℓz〈Nx, z〉+ (gx +1)ℓz〈x, z〉+ ℓyℓz〈y, z〉

≡ 〈Nx, Nx〉+ 0+ ℓyix,y

+0 + (gx + 1) + (gx + 1)ℓyδx,y

+ ℓzix,z +(gx +1)ℓzδx,z + ℓyℓzδy,z

≡ 〈Nx, Nx〉+ ℓyix,y + ℓzix,z + ℓyℓzδy,z + gx +1 + (gx + 1)(ℓyδx,y + ℓzδx,z)

Substituting, we get:

〈Ny
C◦x, Nz

C◦x〉

≡ 〈Ny, Nz〉

+ ix,y · (〈Nx, Nz〉+(gx + 1)〈x, Nz〉+ ℓy〈y,Nz〉 )

+ ix,z · (〈Nx, Ny〉+(gx + 1)〈x, Ny〉+ ℓz〈z, Ny〉 )

+ ix,yix,z(〈Nx, Nx〉+ ℓyix,y + ℓzix,z + ℓyℓzδy,z + gx + 1+ (gx + 1)(ℓyδx,y + ℓzδx,z))

≡ 〈Ny, Nz〉

+ ix,y · (〈Nx, Nz〉+(gx + 1)ix,zℓx + ℓyiy,z )

+ ix,z · (〈Nx, Ny〉+(gx + 1)ix,yℓx + ℓziy,z )

+ ix,yix,z(〈Nx, Nx〉+ ℓyix,y + ℓzix,z + ℓyℓzδy,z + gx + 1)

+ ix,yix,z(gx + 1)(ℓyδx,y + ℓzδx,z)�
≡0 because ix,y=1⇒δx,y=0

≡ 〈Ny, Nz〉+ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ 2 · ix,yix,z(gx + 1)ℓx +

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,y
2 ix,zℓy + ix,yix,z

2 ℓz + ix,yix,zℓyℓzδy,z�
≡0 unless y=z

+ ix,yix,z(〈Nx, Nx〉+ gx�
≡0 by assumption

)+ ix,yix,z

≡ 〈Ny, Nz〉+ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yℓyδy,z + ix,yix,z

Note that in the case of y = z we have

〈Ny
A◦x, Ny

A◦x〉 ≡ 〈Ny , Ny〉+ ix,y(ℓy +1)

≡ |Ny |+ ix,y(ℓy + 1)
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and we have only made use of the assumption that 〈Nx, Nx〉+ gx≡ 0. We can now turn to
the proof proper.

Py,z(A ◦x)

≡ 〈Ny
A◦x, Nz

A◦x〉+ iy,z
A◦x · (cy

A◦x + cz
A◦x +1) + δy,z · gy

A◦x

≡ 〈Ny , Nz〉+ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yℓyδy,z + ix,yix,z

+(iy,z + ix,y · ix,z(δy,z + 1)) · (cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)

+ δy,z (gy + ix,y · (ℓy + 1))

≡ 〈Ny , Nz〉+ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yℓyδy,z + ix,yix,z

+ iy,z(cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)

+ ix,y · ix,z(δy,z +1) · (cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)

+ δy,z gy + ix,yℓyδy,z + ix,yδy,z

≡ 〈Ny , Nz〉+ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yix,z

+ iy,z(cy + cz +1) + iy,z(ix,y · ℓy + δx,ygx + ix,z · ℓz + δx,zgx)

+ ix,y · ix,z(δy,z +1) · (cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)

+ δy,z gy + 2 · ix,yℓyδy,z + ix,yδy,z

≡
P (A)≡0

ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yix,z

+ iy,z(ix,y · ℓy + δx,ygx + ix,z · ℓz + δx,zgx)

+ ix,y · ix,z(δy,z +1) · (cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)

+ ix,yδy,z

≡ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yix,z

+ iy,z · ix,y · ℓy + iy,z · ix,z · ℓz + iy,z(δx,ygx + δx,zgx)+ ix,y · ix,z(δx,ygx + δx,zgx)�
≡0

+ ix,y · ix,z · (cy + cz +1) + ix,y · ix,z · (ix,y · ℓy + ix,z · ℓz)

+ ix,y · ix,z · δy,z · (cy + ix,y · ℓy + δx,ygx + cz + ix,z · ℓz + δx,zgx +1)�
≡1 if y=z

+ ix,yδy,z

≡ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yiy,zℓy + ix,ziy,zℓz + ix,yix,zℓy + ix,yix,zℓz + ix,yix,z

+ ix,yiy,zℓy + ix,ziy,zℓz + iy,z(δx,ygx + δx,zgx)

+ ix,y · ix,z · (cy + cz +1) + ix,yix,zℓy + ix,yix,zℓz

+ ix,yix,zδy,z + ix,yδy,z�
≡0

2.6 A Combinatorial Characterization 65



≡ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yix,z + iy,z(δx,ygx + δx,zgx)+ ix,y · ix,z · (cy + cz + 1)

ℓy(2 · ix,yiy,z + 2 · ix,yix,z) + ℓz(2 · ix,ziy,z +2 · ix,yix,z)

≡ ix,y〈Nx, Nz〉+ ix,z〈Nx, Ny〉

+ ix,yix,z + iy,z(δx,ygx + δx,zgx)+ ix,y · ix,z · (cy + cz + 1)

≡
∗

ix,y · (ix,z · (cx + cz +1)+ δx,z · gx) + ix,z · (ix,y · (cx + cy +1) + δx,y · gx)

+ ix,yix,z + iy,z(δx,ygx + δx,zgx)+ ix,y · ix,z · (cy + cz + 1)

≡ ix,y · ix,z · (2cx +2cz + 2cy +3) + ix,yix,z

+ ix,y · δx,z · gx + ix,z · δx,y · gx

+ iy,z(δx,ygx + δx,zgx)

≡ gx · (δx,z · ix,y + δx,y · ix,z + δx,y · iy,z + δx,z · iy,z)

≡
∗∗

gx · (δx,z · ix,y + δx,y · ix,z + δx,y · ix,z + δx,z · ix,y)

≡ 0

where at ∗ we make use of the equations

〈Nx, Nz〉≡ ix,z · (cx + cz +1) + δx,z · gx

〈Nx, Ny〉≡ ix,y · (cx + cy +1)+ δx,y · gx

which hold by the assumption that P (A)≡ 0. At ∗ ∗ we use of the fact that x = y⇒ iy,z =
ix,z, and x = z⇒ iy,z = iy,x = ix,y.

Again we make a note about the special case y = z. In this case we could calculate

〈Ny
A◦x, Ny

A◦x〉+ gy
A◦x

≡ 〈Ny, Ny〉+ ix,y(ℓy + 1)+ gy + ix,y · (ℓy +1)

≡ 〈Ny, Ny〉+ gy

≡ 0

in which case we have only made use of the assumptions 〈Ny, Ny〉+ gy≡ 〈Nx, Nx〉+ gx≡ 0.
So we can remark that the conjunction of the equations

〈Nx, Nx〉+ gx≡ 0

for all chords x forms an invariant under the switch operation in itself. �

Building upon the work of de Fraysseix and Ossona de Mendez, we have thus developed a
powerful invariant under the switch operation, using which we were able to prove a Rosen-
stiehl-type criterion for the realizability of augmented chord diagrams, which in turn
implies the Rosenstiehl criterion for cross-realizability of chord diagrams. Using
the “smaller” invariant mentioned above, we can complete our proof of 2.13. We first show
the following statement about augmented chord diagrams:
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2.26. Let A be an augmented chord diagram and v1, � , vk its locally crossing
chords. A is realizable if and only if the following two conditions hold:

i. no two chords of A ◦ v1� ◦ vk with the same local color are interlaced

ii. every chord x the crossing neighborhood of x in A is odd iff x is
globally crossing in A

Proof. We already know that the specified conditions are necessary. All we have to show
is that they are sufficient. Let A be an augmented chord diagram for which both condi-
tions hold. By 2.20 all we have to show is that no chord is globally crossing in A ◦ v1 � ◦
vk. As we have seen the conjunction of the equations

〈Nx, Nx〉+ gx≡ 0

is an invariant of the switch operation, and this conjunction is precisely the statement
that the crossing neighborhood of every chord x is odd iff x is globally crossing. So this
statement holds in A ◦ v1 � ◦ vk iff it holds in A, which it does by assumption. As the
crossing neighborhood of every chord in A ◦ v1 � ◦ vk is empty, it follows that no chord is
globally crossing as required. �

We can now prove 2.13, i.e. a chord diagram C with chords v1, � , vk is cross-realizable if
and only if C is even and C ◦ v1� ◦ vk is bipartite.

Proof of 2.13. Again, we already know that 2.13 is necessary and we have to show that
it is also sufficient. By definition, there exists a crossing augmentation A of C that is
even, if and only if C is even. By 2.21, there exists a crossing augmentation A of C with
the property that no two chords of A ◦ v1� ◦ vk with the same local color are interlaced, if
and only if C ◦ v1� ◦ vk is bipartite. Now we observe that for crossing augmentations A

2.26.ii is fulfilled if and only if A is even. Taking these statements together, we obtain
that there exists a crossing augmentation A of C that meets the conditions of 2.26 if and
only if C meets the conditions of 2.13 and so 2.13 follows from 2.26. �

2.7 The Lovász-Marx Criterion for Cross-Realizability

In the previous section we have shown a combinatorial criterion for the realizability of
augmented chord diagrams which implies the Rosenstiehl Criterion for the cross-realiz-
ability of chord diagrams (and interlacement graphs). In this section we will obtain a
proof of the Lovász-Marx Criterion for cross-realizability of interlacement graphs from the
Rosenstiehl Criterion. The proof we present is due to Aigner. It is the only proof of the
Lovász-Marx Criterion the author was able to find in the literature, as Lovász and Marx
do not give a proof of their theorem in [6].
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We have seen characterizations of realizable chord diagrams and realizable augmented
chord diagrams. This time we want to focus on interlacement graphs. Recall that we
defined a partial order on the set of chord diagrams via two operations, the loop removal
and the switch deletion, that each reduce the number of chords in the given diagram. A
chord x splits a curve into two closed segments c1 and c2. The loop removal at a chord x

required us to remove x along with all chords incident with one of the two segments, say
c1.

Different chord diagrams may have the same interlacement graph Λ. Moreover, the ver-
tices y � x of Λ may belong to c1, to c2, or to both and for a given vertex y it is not
uniquely determined by Λ which one of these cases applies. So the loop removal does not
induce a well defined operation on interlacement graphs. We will therefore consider a
modified concept of loop removal: instead of deleting x and all chords incident to one seg-
ment, we remove x and all chords interlaced with x. For Λ this means that we delete the
vertex x along with its neighborhood.

Does this modified version also preserve cross-realizability? Geometrically, the new con-
cept of loop removal corresponds to shrinking c1 until it is contained entirely in one face of
c2. This removes precisely the crossings between the two global segments. We then per-
form a switch deletion at v which only has the effect of removing v since at this point v

does not have any neighbors. An example is given in Figure 2.28. We conclude that the
modified concept of loop removal also preserves cross-realizability. For interlacement
graphs Λ and Λ′, we write Λ′ 6r Λ if Λ′ can be obtained from Λ by a (possibly empty)
sequence of loop removals.

a) b) c)

x x

Figure 2.28. The modified loop removal operation at x works like this: we start out with a curve
a), shrink one of the global segments at x to obtain b) and then we apply the switch removal to
get the result c).

In [6] Lovász-Marx formulate their theorem on the level of chord diagrams using the orig-
inal version of loop removal. We are going to prove an analogue of their theorem due to
Aigner [1] that is formulated on the level of interlacement graphs and uses the modified
concept of loop removal.

The switch deletion on chord diagrams does induce induce a well defined operation on
interlacement graphs: switch deleting the vertex x means replacing every edge with a non-
edge (and vice versa) in the neighborhood of x and then deleting x. We write Λ′ 6s Λ if Λ′

can be obtained from Λ by a (possibly empty) sequence of switch deletions.
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For the purposes of this section we define the relation 6 on the set of all graphs, as the
order relation generated by the union of 6r and 6s . In other words, Λ′ 6 Λ iff Λ′ can be
obtained from Λ by a sequence of switch deletions and loop removals. 6 is anti-sym-
metric because both operations strictly reduce the number of vertices. The set of inter-
lacement graphs (also called circle graphs) is the set of all I(C) for some chord diagram C

and it is denoted by Ci. By construction we have:

2.27. Let Λ′, Λ ∈ Ci be interlacement graphs with Λ′ 6 Λ. If Λ is cross-realizable,
so is Λ′.

The variant of the Lovász-Marx Criterion we are going to show now is:

2.28. Lovász-Marx Criterion for Interlacement Graphs Aigner

Λ∈Ci is cross-realizable iff K2n 
 Λ for all n > 1.

Again, that the condition is necessary follows immediately from 2.27 and the fact that no
K2n is cross-realizable. To show that the condition is sufficient we introduce further
classes of graphs. Let K be the class of graphs G with K2n 
 G for all n > 1. Let E be the
class of graphs in which every vertex is even. Finally, let R be the class of graphs for
which the Rosenstiehl condition holds, i.e. all graphs G such that a) every vertex is even,
b) every non-edge is even and c) the set of even edges forms a cut in G. Building on the
fact that a graph is bipartite if and only if it contains no odd circle, we note that c) is
equivalent to the statement: G contains no circle with an odd number of even edges.

Given this notation, we can immediately observe the following:

1. By the Rosenstiehl Criterion for cross-realizability, the class of cross-realizable
interlacement graphs is just Ci∩R.

2. Every Rosenstiehl graph is even by definition, i.e. R⊂E .

3. Theorem 2.28 is equivalent to Ci∩R= Ci∩K.

4. If Λ is realizable, then K2n 
 Λ. Hence Ci ∩ R ⊂ K and all that is left to show is
Ci∩K⊂Ci∩R.

We now come to the first of two lemmas that constitute the proof of 2.28.

2.29. E is 6s -closed, and G∈E� K2n 
s G for all n > 1.
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Proof. E is 6s -closed. Let G∈E and H be the graph obtained from G by switch deletion
of u. We have to show that all vertices of H have even degree, which is trivially satisfied
for all vertices not adjacent to u in G. Let v be a vertex adjacent to u. The set of neigh-
bors of v in H is the symmetrical difference of NG(v) and NG(u), without v and u. So we
have

|NH(v)| = |NG(v)|+ |NG(u)| − 2|NG(v)∩NG(u)| − 2

≡ |NG(v)|+ |NG(u)| ≡ 0 (mod 2) (2.6)

G ∈ E� K2n 
s G for all n > 1. As no K2n is even, this follows from the fact that E is
6s -closed.

G � E� K2n 6s G for some n > 1. It suffices to show the implication for all 6s -minimal
graphs with G � E . Let G be such a graph, which is connected by 6s -minimality. As G is
not even, there is a vertex u of odd degree. Let v be one of its neighbors. The switch dele-
tion at u yields a graph H, which is even by 6s -minimality of G. We calculate

0 ≡ |NH(v)| ≡
(2.6)
|NG(v)|+ |NG(u)| ≡ |NG(v)|+ 1 (mod 2)

and conclude that v is odd in G. As G is connected it follows that all vertices of G are
odd. Assume there are vertices x and y in G that are not adjacent. The switch deletion at
x produces a graph H ′ and does not affect the degree of y, so we have 0 ≡ |NH ′(y)| ≡
|NG(y)| ≡ 1, a contradiction. It follows that G is complete, all vertices are odd and hence
G= K2n for some n> 1. �

Apart from this important observation about even graphs, the key ingredient in our proof
is the following: we already know that 6 preserves cross-realizability. Of course 6 does
not preserve non-cross-realizability, as K2n is not cross-realizability, but all G < K2n are
cross-realizability. So the fact that all < -minors of a graph G are cross-realizable tells us
nothing about the cross-realizability of G. To understand the Lovász-Marx theorem, we
need to understand in what situations we can say something about the cross-realizability
of G. It turns out that these situations are surprisingly easy to characterize.

2.30. Let G be a graph, such that H <G implies H ∈R. Then G∈R� G∈E .

Note that if we restrict our attention to interlacement graphs G, then 2.30 is indeed a
statement about the cross-realizability of G instead of about whether or not the Rosen-
stiehl condition holds for G.

Proof. If G ∈R then of course G ∈ E . So let G be a graph with ∀H: H < G⇒H ∈R and
G∈E , i.e. Rosenstiehl condition a) is satisfied by assumption.
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Rosenstiehl condition b) holds for G. Let u, v be two non-adjacent vertices of G. The loop
removal at u decreases the degree of v by the size of their common neighborhood. If H

denotes the graph thus obtained, we have

|NH(v)|= |NG(v)| − |NG(v)∩NG(u)|

⇒ |NG(v)∩NG(u)| ≡ |NG(v)|+ |NH(v)| ≡ 0 (mod 2)

which means that u and v have an even number of common neighbors as desired. Note
that all congruences in this proof are modulo 2.

Rosenstiehl condition c) holds for G. We want to check that every cycle in G has an even
number of even edges. As the cycle space is generated by the induced cycles, we can
restrict our attention to those. To be able to count the number of even edges we introduce
a function γ(u, v):V × V →N defined by

γ(u, v)= |NG(u)∩NG(v)|+1 (2.7)

so that the pair (u, v) is even iff γ(u, v) ≡ 1(mod 2). Consequently, a cycle Z = v1� vk

(where all vi are different and v1 and vk adjacent) has even many even edges if and only if

Σ(Z)4 ∑

i=1

k

γ(vi, vi+1)≡ 0

where vk+1 4 v1. Furthermore we define for a fixed set Y = {a, b, c} of 3 vertices and for
any subset X ⊂ Y the quantity tY (X) to be the number of vertices v � Y that are adjacent
to all x ∈X but to no other vertex y ∈ Y \X. Given this notation we have, for example,
for two vertices a, b∈Y

|NG(a)∩NG(b)|= t(a, b)+ t(a, b, c)+

{

1, if c is adjacent to both a and b

0, otherwise
(2.8)

Now, let Z be any induced cycle in G. We will show that Σ(Z) ≡ 0 by considering two
cases.

Case 1: Z = vuw is a triangle. In this case t4 tvuw. As any two vertices have the third as
a common neighbor, we have by 2.7 and 2.8:

γ(u, v) = t(u, v)+ t(u, v, w) + 2

γ(u,w) = t(u, w)+ t(u, v, w)+ 2

γ(v,w) = t(v,w)+ t(u, v, w)+ 2

⇒ Σ(Z) ≡ t(u, v)+ t(u,w)+ t(v,w)+ t(u, v, w)
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Since G is even, we have

0 ≡ |NG(u)|= t(u) + t(u, v)+ t(u,w)+ t(u, v, w) + 2

⇒ Σ(Z) ≡ t(u)+ t(v,w)

Let H denote the graph obtained from G by switch deletion at u. We now consider the
common neighborhood of v and w in H. It consists of the common neighbors of v and w

in G that were not adjacent to u, and the neighbors of u that were not adjacent to either
v or w in G. As v and w are not adjacent in H ∈ R, their common neighborhood is even
and so

Σ(Z) ≡ t(u) + t(v, w)

≡ |NH(v)∩NH(w)|

≡ 0

Case 2: Z has length > 4. This means Z = vuwx1� xk for some k > 1. Again, we consider
the graph H obtained by switch deletion at u which contains the cycle Z ′ = vwx1� xk.
Our aim is to show ΣG(Z)≡ ΣH(Z ′). We first note that the switch deletion of u does not
affect the number of common neighbors of xi and xi+1 as u is adjacent to neither, so

ΣG(Z)+ΣH(Z ′) ≡ γ(xk, v) + γ(v, u) + γ(u,w)+ γ(w, x1)

+ γH(xk, v) + γH(v, w) + γH(w, x1) (2.9)

As in the previous case we have

γ(u, v) = tvuw(u, v) + tvuw(u, v, w) + 1

γ(u,w) = tvuw(u,w)+ tvuw(u, v, w) + 1

γH(v,w) = tvuw(u)+ tvuw(v,w)+ 1

where t counts neighbors in G. As G satisfies Rosenstiehl conditions a) and b)

0≡ |NG(u)| ≡ tvuw(u)+ tvuw(u, v)+ tvuw(u,w)+ tvuw(u, v, w) + 2

0≡ |NG(v)∩NG(w)| ≡ tvuw(v,w)+ tvuw(u, v, w) + 1

which, when summing all 5 congruences, gives

γH(v, w) ≡ γ(v, u)+ γ(u,w)

72 Characterizations of Curves



Now we proceed by considering the three vertices u, w, x1. As x1 is not adjacent to u, the
common neighborhood of w and x1 in H is the set of vertices a with a∼w and a∼ x1 but
a ≁ u in G, plus the set of vertices b with b≁ w, b∼ u and b∼ x1, as these are not removed
from the neighborhood of w and remain in the neighborhood of x1.

γ(w, x1) = tuwx1
(w, x1)+ tuwx1

(u,w, x1) + 1

γH(w, x1) = tuwx1
(w, x1)+ tuwx1

(u, x1) + 1

Since ux1 � E(G) and b) holds for G we also have

0≡ |NG(u)∩NG(x1)| ≡ tuwx1
(u, x1)+ tuwx1

(u,w, x1)+ 1

⇒ γH(w, x1) ≡ γ(w, x1)+ 1

By symmetry, the congruence γH(xk, v) ≡ γ(xk, v) + 1 holds as well. We now have
expressed γH(xk, v), γH(v, w) and γH(w, x1) in terms of γ. Substituting these results in
(2.9) we obtain the desired result ΣG(Z)+ΣG�u(Z

′)≡ 0. �

It is now easy to complete the proof of our version of the Lovász-Marx Criterion.

Proof of 2.28. We show K ⊆R, which means that if K2n 
 G for all n > 1, then G ∈R.
Assume the contrary is true and pick a 6 -minimal counterexample G, i.e. K2n 
 G for all
n > 1, G � R, but H ∈ R for all H < G. From K2n 
 G follows K2n 
s G for all n > 1,
which implies G ∈ E by 2.29. But then we can apply 2.30 to obtain G ∈R, which is a con-
tradiction. �

2.8 The Number of Realizations

2.31. A realizable augmented chord diagram (C, a) has exactly one realization c.

Proof of 2.31. First of all we note that we can ignore the traversal of the graph G =
G(C) given by C, as it must be the same for all realizations of C. We are only interested
in showing that the drawing of G in the plane is uniquely determined by a. So instead of
considering (C, π) and (C, a) we can consider (G, π) and (G, a). We then have to show
that given a realizable augmentation a of G, the rotation system π of a realization is
uniquely determined by a. By 1.11 it then follows that the equivalence class of a realiza-
tion (G, d) is uniquely determined.
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Therefore, let (G, d) be a realization of (G, a) in the plane with rotation system π = (πv)v.
The augmentation a defines a proper coloring of the faces of (G, d) with black and white.
At any vertex v the edges of the two touching matchings form a cycle on the half-edges
incident with v (see Figure 2.29). This cycle gives the undirected cyclic order of the half
edges in the local rotation at v. This means that at every vertex v the local rotation πv is
determined by av up to reversal.

Figure 2.29. The edges of a touching matching at a double point v form a cycle on the set of
half-edges incident with v.

Now, pick a vertex v0. Fix an orientation of the local rotation πv0
at v0. If we can now

show that the orientation of all other local rotations πv are uniquely determined by πv0
we

are done. To see this, we argue that if vertices v and w are adjacent, then av, aw and the
oriented local rotation at v determine the oriented local rotation at w:

Consider Figure 2.30. Denote the half-edges of the edge vw with hv and hw. Denote the
edges of the black matching that are incident with hv and hw with bhv

and bhw
, respec-

tively. bhv
and bhw

belong to the same face of (G, d), because vw bounds on two faces with
different color, and hence bhv

and bhw
are on the “same side” of vw. This means that if bhv

is oriented towards hv by πv, bhw
has to be oriented away from hw by πw, as π is the rota-

tion system of (G, d). Correspondingly, if bhv
is oriented away from hv by πv, bhw

has to be
oriented towards hw by πw. Thus the orientation of πw is determined by πv.

v w

hv hw

bhv
bhw

Figure 2.30. Given an augmentation (au)u and a local rotation πv at v, the local rotation πw at
w is uniquely determined.
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Note that the same does not hold if (G, a) is not realizable. While (G, a) always defines a
local rotation at every vertex up to reversal, the relation expressed in Figure 2.30 does not
in general lead to a consistent orientation of the local rotations. �

Another way to put 2.31 is to say that the function mapping a curve c to its augmented
chord diagram A(c) has an inverse (which is given by the proof of 2.31) and, hence, is
bijective. We can use this fact to count the number of realizations of a chord diagram C

with a given type function ϑ.

2.32. Let C be a chord diagram and ϑ a type vector. Then

#curves realizing (C, ϑ) = #realizable augmentations of (C, ϑ)

Proof. By 2.31 the set of curves realizing (C, ϑ) and the set of realizable augmentations
of (C, ϑ) are in bijection. �

In 1.14 we computed the number of cross-realizations of a cross-realizable chord diagram
C to be 2k−1, where k is the number of components of I(C). There we used a geometric
argument to show that there are indeed that many non-equivalent cross-realizations.
Using 2.32 and the equational version 2.23 of our criterion for the realizability of aug-
mented chord diagrams, we can now easily compute that the same formula holds for the
number of ϑ-realizations of C for a given type vector ϑ.

2.33. Let C be a chord diagram that is ϑ-realizable for some type vector ϑ.
Denote the number of components of I(C) with k. Then

#curves realizing (C, ϑ) = 2k−1

Proof. By 2.32 and the equational version of our criterion for the realizability of aug-
mented chord diagrams 2.23, we need to compute the number of augmentations A = (C,

(av)v) of (C, ϑ), with the property that the equation

〈Nx, Ny〉+ ix,y · (cx + cy +1)≡ 0

holds for all pairs of chords x� y and the equation

〈Nx, Nx〉+ gx≡ 0

holds for all chords x.

Note that the size of the common crossing neighborhood 〈Nx, Ny〉 is determined by C and
ϑ. So for a given x the value of gx is the same for all realizable augmentations A. As ix,y

is also determined by C, the only respect in which the realizable augmentations A can
differ is with regard to the choice of the cx, the classes of the individual chords. If two
chords are interlaced, we have

cx + cy≡〈Nx, Ny〉+ 1
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so the class cx of a chord x uniquely determines the classes of all chords y in the same
component as x. We thus can have at most 2k such augmentations A. However, an aug-
mentation (av)v is identified with the augmentation (s ◦ av)v where s is the bijection s:
{black, white, crossing} → {black, white, crossing} that swaps black and white. The effect
of s on our variables is that the value of each cx is flipped, i.e. s: cx� cx + 1(mod 2) for all
x. Thus, we have counted every equivalence class twice and, hence, obtain an upper
bound of 2k−1.

All we have to show now is that there are indeed 2k−1 different augmentations with the
above properties. To that end we fix a chord x and an augmentation A0 realizing (C, ϑ).
We use A0 to denote the representative of the equivalence class of augmentations [A0] with
cx = 0. Denote the k components of I(C) with C1, � , Ck such that x ∈ C1. For every
vector v ∈ {0, 1}k−1 we define A + v to be the augmentation obtained from A by mapping
cy � cy + vi for all chords y � C1 where i is the index of the component containing y. All
A0 + v are augmentations of (C, ϑ) as only the classes of the chords changed. We claim
that all A0 + v are realizable. For every individual chord z the equation holds, because it
holds for A0, and for every pair of chords z1 � z2 that are in the same component Ci it
holds by construction. Now, let z1� z2 be chords in two different components. As they are
in different components they are not interlaced and hence the corresponding equation has
the form

〈Nx, Ny〉≡ 0

which holds, because it holds for A0. Hence all equations hold and by 2.23 all A0 + v are
realizable. For v � v ′ the two augmented chord diagrams A0 + v and A0 + v ′ are indeed in
different equivalence classes, because they differ with regard to the class cz of some chord
z, but agree with regard to the class cx of the fixed chord x. This proves the formula as
|{0, 1}k−1|=2k−1. �

2.9 Outlook: Sets of Curves

In this chapter we saw numerous applications of the switch operation which is a useful
concept for the study of curves in the plane. We explicitly considered curves that can have
both touching and/or crossing double points and defined the switch operation on this
larger domain. By the introduction of augmented chord diagrams we were able to keep
track of the type of the individual double points, with the consequence that the realiz-
ability of an augmented chord diagram is invariant under the switch operation. This is a
very nice property that, of course, substructure operations such as the switch deletion do
not have.
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The switch corresponds to replacing the local matching at a double point v with the diag-
onal matching. As we already observed in section 2.2, the replacement of the local
matching at v with the global matching at v yields two curves, instead of one. Therefore,
we cannot apply this operation as it leads out of the domain of objects we consider. How-
ever, in terms of substructure operations, this corresponds to the loop removal which we
met in the context of the Lovász-Marx Criterion and which is a very useful concept as
well. So, as with the switch, we would like to come up with an analogue of the loop
removal under which realizability is invariant.

In case of the switch, we avoided the deletion of the touching double point that arises
from the switch at a crossing double point by extending the domain we consider to curves
that may have double points. In case of the loop removal, we now would like to avoid the
deletion of one of the loops by considering sets of curves as opposed to individual curves.
We now present a brief outlook on this subject matter.

Note, however, that our purpose here is not to use the “switch-approach” to give criteria
for the realizability of more general objects than curves. To that end, we refer the reader
to Fleming and Mellor [4] who employ the “switch-approach” to give an “algorithmic” crite-
rion for the cross-realizability of directed graphs in general. We rather argue that a setting
that allows for a combination of the approaches taken by de Fraysseix-Ossona de Mendez
on the one hand and Lovász-Marx on the other is beneficial for the study of curves them-
selves.

An Euler partition of a multigraph G is a set of closed walks w = {wi: 1 6 i 6 k} on G

with the property that every half-edge of G is in exactly one of the walks wi. A set of
curves in the plane is a triple (G, d, w) where G is a connected multigraph, d is a cellular
embedding of G in the plane and w is an Euler partition of G. Let Mv denote the set of
matchings at a vertex v. Given all of our previous observations it is immediate that a
function ℓ: V (G)→

⋃

v∈V (G)
Mv with ℓ(v)∈Mv that selects a local matching at each of the

vertices v defines an Euler partition of G and vice versa. We call the operation induced on
sets of curves by changing the value of ℓ(v) at a single vertex a local replacement.

Note that the terms local and global matching are still well-defined in this context. How-
ever, at a double point where two different curves meet the local and the global matching
coincide (we call such a double point disconnecting). Thus, the set of walks does not
define a 3-coloring of the matchings at a double point. The drawing d, however, still does
and hence the concept of an augmentation that colors the matchings with “crossing”,
“black” and “white” is well-defined.

A generalized chord diagram is a pair of multigraphs (Gr, Gc) on the same vertex set
such that Gr is 2-regular and Gc is 1-regular. This is just the definition of a chord dia-
gram, except that the requirement that Gr is a circle has been weakened. With general-
ized chord diagrams the components of Gr are circles and every circle corresponds to one
walk in w. So chord diagrams are generalized chord diagrams that represent a set of a
single curve. Just as in the case of chord diagrams, we have a one-to-one correspondence
between generalized chord diagrams and pairs (G, w) of 4-regular multigraphs G and
Euler partitions w. Note that below we consider only the case that G is connected.
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The augmentation of a set of curves depends only on the pair (G, d). If we now define
augmented generalized chord diagrams, the induced local replacement operation on
these objects will automatically leave realizability invariant as the local replacement only
affects the set of walks w and not the augmentation.

2.34. Any augmented generalized chord diagram A can be converted into a
touching augmented chord diagram A′ by a sequence of local replacements.

A is realizable if and only if no two chords of the same color are interlaced
in A′ and no chord is globally crossing.

Proof. At any chord v of A there is always one matching that is neither global nor
crossing. We now replace the local matching of v with that matching and call the
resulting diagram A1. Note that if any chord w is disconnecting in A1, it was also discon-
necting in A. Iterating this process, we obtain a touching augmented chord diagram A′. A

is realizable if and only if A′ is realizable because realizability is invariant under the local
replacement operation. By 2.19 the result follows. �

This, again is an “algorithmic” criterion for realizability. What we would like to have is a
combinatorial, Rosenstiehl-type criterion. However, this is not as straightforward to
obtain as one might hope. The key ingredient in the proof of 2.23 was that we were able
to express the values of the boolean predicates in A ◦ v in terms of the values of these
predicates in A (see 2.25). In this more general setting, the author was not able to define
a set of predicates that permit a lemma such as 2.25.
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Chapter 3

Thrackles

3.1 Definition

A thrackle is a drawing of a graph in the plane in which every two edges have precisely
one point in common:

– if the two are incident, they share an end-point,
– otherwise, they share an interior point at which they cross each other.

We call this requirement the thrackle condition. A graph is thrackleable if it has a
thrackle drawing (i.e. if it can be drawn as a thrackle). In most cases we will denote a
thrackle drawing by a capital letter T to distinguish them from plane drawings d. It is
immediate from the definition that deleting (the drawings of) edges from a thrackle always
yields a thrackle drawing of the corresponding subgraph and therefore

3.1. Thrackleability is closed under the subgraph relation.

Let us now consider some examples.

The 3-circle C3 is thrackleable, as every two of its three edges are incident. Thus, any
plane drawing of the C3 gives us a thrackle drawing as no additional crossing is required.
The C5 is a more interesting example of a thrackleable graph – a thrackle drawing is given
in Figure 3.1.

Figure 3.1. A thrackle drawing of C5.

As it turns out, the C4 = ({a, b, c, d}, {ab, bc, cd, da}) is not thrackleable (see Figure 3.2a).
To see this, assume there is a thrackle drawing of C4. In this drawing the edges ab and cd

cross each other at a point x. Consider the closed curve c1 obtained by starting at x,
traversing ab, bc and then cd until we reach x again. Similarly, construct a closed curve c2
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by starting at x, traversing ba, ad and then dc until we reach x again. As the curves ab

and cd cross at x, the closed curves c1 and c2 touch at x. As c1 contains bc and c2 contains
ad we know from the definition of a thrackle that c1 and c2 have exactly one other point y

in common at which they cross. This is a contradiction to the fact that two closed curves
in the plane cross each other an even number of times (cf. 2.6).

a) b)

x

a

b

c

d

x x

y

y

Figure 3.2. a) Apart from the crossing at x a thrackle drawing of C4 would have to contain
exactly one other crossing y between the two dashed edges, which is impossible. b) The chord
diagram such a thrackle drawing would have is not cross-realizable.

Note how similar the above argument is to the one we employed in chapter 2 to prove
that a double point of a crossing curve is even (see 2.7). Indeed, we can employ the results
we developed there to show that C4 cannot be thrackled. As a thrackle drawing of a circle
is nothing but a drawing of a closed curve in the plane with a finite number of double-
points at which the curve crosses itself, we can associate with each thrackle drawing a
chord diagram. Moreover, any thrackle drawing of the C4 would have the chord diagram
given in Figure 3.2b): the chord diagram of a C4-thrackle is entirely determined by the
thrackle condition. It is a consequence of 2.7 that this chord diagram cannot be cross-real-
ized as both chords are interlaced with odd many others. This observation, that thrackle
drawings of circles are curves in the sense of chapter 2 and hence have a chord diagram, is
the key idea of this chapter.

We have now seen that while C3 and C5 are thrackleable, C4 is not. We will soon show
that C6 and, in fact, all other circles are thrackleable. But given our knowledge about C3,

C4 and C5 we can already observe that

3.2. Thrackleability is not closed under the (topological) minor relation.

This may appear unusual because due to Kuratowski’s criterion for the planar realizability
of graphs, one’s first hope might have been to characterize thrackleable graphs in terms of
some set of obstructions under the minor relation. Different methods will have to be
employed.

3.2 Edge Duplication

We now want to decide for each Ck whether it has a thrackle drawing or not. To do this a
means to construct a thrackle drawing of a larger graph from the thrackle drawing of a
smaller graph would be useful. Conway introduced the concept of edge duplication to
achieve just that. The next proof will give an example of this concept.
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3.3. If Ck is thrackleable, so is Ck+2.

Proof. Let T be a thrackle drawing of Ck. We replace one edge a in T by a path a1, a2, a3

of three edges as shown in Figure 3.3 to obtain a drawing T ′. The three new edges a1, a2,

a3 are understood to follow the arc of the original edge a, such that the ai cross all of the
edges a crossed in T , which are all edges of T ′ except e and f . (Formally, this is an appli-
cation of 1.9.) Additionally, a2 and a3 cross e while a1 has a common endpoint with e.
Similarly, a1 and a2 cross f while a3 has a common endpoint with f . So, for any edge b

already present in T and any new edge ai the pair {ai, b} have a point in common.

On the other hand, any two edges b, c that were already present in the original drawing
have a point in common in T ′ because they had one in T . Finally, {a1, a2} and {a2, a3}
have a common endpoint while {a1, a3} cross each other. The thrackle condition is thus
satisfied for any two edges in T ′: we have constructed a thrackle drawing T ′ of Ck+2 from
a thrackle drawing T of Ck.

Figure 3.3. One edge is replaced with a path of three edges.

�

Before we elaborate on edge duplication, let us reap the benefits of this result.

3.4. All circles except C4 are thrackleable.

Proof. As C5 is thrackleable, it follows 3.3 by that all odd circles are thrackleable. C6 can
be thrackled as shown in Figure 3.4 and again we can apply 3.3 to obtain that all even
circles with more than four edges are thrackleable.

Figure 3.4. Three thrackle drawings of C6. These drawings were obtained by edge duplicating a
path of two edges (see below) and connecting the two paths in the right way. In section 3.5 we
shall see that these are indeed all thrackle drawings of C6.

�
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Let us now return to edge duplication. In the literature this concept is usually explained
just by looking at a concrete example such as the one given above. However, it is the
experience of the author that one can easily confuse oneself when trying to check a more
complex construction in such an ad-hoc manner. So he would like to invite the reader to
bear with him trough the introduction of a tad more machinery which, he hopes, will
greatly increase the confidence of the reader in the validity of the results presented in the
next section.

The idea is that if we construct a thrackle drawing T ′ of G′ from a thrackle drawing T of
G by inserting new edges in a small neighborhood of an edge e ∈ E(G), we know that
these will cross all edges e ′ that cross e. As already indicated a formal proof of this state-
ment is essentially a careful application of our “Nice Neighborhood Lemma” 1.9. A

thrackle drawing of G can be interpreted a plane drawing d̃ of a graph G̃ by considering

all the crossings as vertices of degree 4. Applying 1.9 to (G̃ , d̃) we obtain nice neighbor-
hoods of all the vertices and edges as indicated in 1.9. A neighborhood around a vertex v

from our our original graph G will be called disk and denoted Dv. For an edge e = vw ∈
E(G) we consider the union of all the neighborhoods of all the edges and vertices corre-
sponding to e in G̃ except for Dv and Dw. We will call this union the strip Se. Taking
Dv, Dw and Se together we obtain a region that in essence looks like the on depicted in
Figure 3.5. Note that while all the disks are pairwise disjoint and while any strip is dis-
joint from all of the disks, two strips are disjoint if and only if the corresponding edges do
not cross. Given this construction, we can find a curve segment in Se with its two end
points on the boundary of Dv and Dw which “runs parallel to e” in the sense that it does
not cross e and does cross exactly the edges e crosses (as often as e and in exactly the
same order).

Figure 3.5. We can find a nice neighborhood around an edge e in a thrackle drawing that can
be decomposed into two disks and one strip as shown above. The strip contains all the crossings
of e with other edges.

This allows us to carry out explicit constructions on a drawing T without knowing what
T actually looks like, as we will confine ourselves to inserting arcs that run parallel to an
edge and modifying the drawing in small neighborhoods of the vertices. In particular,
when we represent our constructions on a thrackle drawing T of G in the figures and
sketches below, we start out with by a different drawing of G (a non-thrackle drawing
which often is planar) and use that drawing to indicate the local modification of T .
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A local modification of T is a drawing T ′ of some graph G′ that differs from T only in
that some disks and strips have been replaced, such that: Each edge consists of a middle
part contained in a strip and two end pieces contained in the two incident disks. Each
strip contains a set of middle parts that run from one disk to the other and do not have
any points in common. Every edge that corresponds to one of these middle parts is said to
belong to that strip. Each disk contains a set of vertices and a set of end pieces. Each end
piece connects a vertex with a middle part. All end pieces are simple and if two end pieces
have a common point they either end in the same vertex or they cross. And, of course, no
three edges cross at a single point.

A local modification of a drawing T of G can be defined by taking any drawing of G with
the same rotation system as T , indicating disks and strips around the vertices and edges
and giving the local modifications of these disks and strips.

The key property of a local modification T ′ of T is that if e′ is an edge in T ′ that belongs
to the strip Se of e in T and the analogous statement holds for f ′ and f , then

#crossings of themiddle parts of e′ and f ′= #crossings of e and f

The following lemma tells us what we have to check to make sure that a given local modi-
fication produces a thrackle drawing T ′, assuming T is a thrackle drawing.

3.5. Edge Duplication Lemma

Let T ′ be a local modification of a thrackle drawing T . T ′ is a thrackle
drawing if the following two conditions are satisfied:

• For every modified disk Dv and every pair of edges {e, f } meeting Dv

and belonging to different strips, e and f have a point of Dv in
common.

• For every modified strip S and every pair of edges {e, f } belonging
to S, e and f have a common point in one of the two disks, but not
in the other.

Proof. First we note that the two conditions required in the lemma hold automatically
for all unmodified disks and strips. In an unmodified disk all ends are incident with a
single vertex and do not cross one another. An unmodified strip contains only one middle
part so there is nothing to check.

We have to check that for every two edges e′, f ′ the thrackle condition is satisfied. As we
require in the definition of a local modification that all new multi-points are of the right
type (i.e. either a common endpoint at a vertex, or a crossing, etc.) and all old multi-
points are of the right type because T is a thrackle, we only need to check that e′ and f ′

have exactly one point in common. Let e and f denote the corresponding edges in T . We
now consider the following cases:
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e′ and f ′ belong to the same strip S .

By construction the middle parts of e′ and f ′ have no point in common. However, as the
condition holds for S, we know that e ′ and f ′ meet in precisely one of the two incident
disks.

e′ and f ′ belong to different strips.

If e ′ and f ′ do not share a disk, we have

#common points of e′ and f ′

= #crossings of the middle parts of e ′ and f ′

= #crossings of e and f

= 1

If e′ and f ′ have a disk Dv in common, they do not have another disk in common, because
otherwise they would belong to the same strip, as G does not have multi-edges. This
implies, however, that e and f are incident and do not cross in T . So the strips of e′ and
f ′ are disjoint and thus the middle parts of e′ and f ′ have no point in common. The
common point of e ′ and f ′ are therefore the common points of e ′ and f ′ in Dv and the
condition guarantees that there is precisely one of those. �

In practice this means that we can check the correctness of a local modification by looking
at the disks one at a time, and then looking at the strips one at a time. The consequence
is that we can effectively reuse parts of a local construction: if a modification of a disk
meets the condition given above it will do so in any drawing, so we do not have to check
that again. Similarly, if two neighboring disk-modifications are connected by a strip con-
taining k edges, and we have checked that the condition is satisfied for this strip, we can
connect these two disk-modifications with the given orientation by k edges in another
drawing without having to check the condition for that strip again.

The duplication of a single edge is a simple application of the above lemma, which will
lead us to the duplication of paths, which in turn will provide us with building blocks we
will reuse extensively in the next section. Consider Figure 3.6.

Figure 3.6. Thrackle drawing of a duplicated edge.
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In the left disk, all black edges have the black vertex in common and the gray edge crosses
every black edge belonging to a different strip, so the left disk satisfies the condition. The
same is true for the right disk. The gray and the black edge in the strip have a common
point in the right disk but not in the left. As all the other disks and strips of the drawing
have not been modified, and as the construction is evidently not dependent on the number
of edges incident to the black vertices, we have shown that if a graph G = (V , E) has a
thrackle drawing, so has G′= (V ∪̇ {v ′, w ′}, E ∪̇ {v ′w ′}).

Note that the constructions in the left and right disks of Figure 3.6 can be combined as
shown in Figure 3.7a). Again all black edges have the black vertex in common, the two
gray edges have the gray vertex in common and both gray edges cross all black edges in
strips different from their own. Therefore, the disk-modification shown in Figure 3.7a) sat-
isfies the condition of the lemma. Note that the one gray edge crosses the black edge it
belongs to while the other does not. This allows us to use this construction at two neigh-
boring disks such that the condition is satisfied for the strip in between as can be seen in
Figure 3.7b).

a) b)

Figure 3.7. Several instances of the modified disk shown in a) can be combined as in b) such
that the condition of the Edge Duplication Lemma is satisfied for both disks and the strip in
between.

Note that the two gray vertices in Figure 3.7b) are placed on opposite sides of the black
edge. At each disk the strips belonging to the gray edges both border on the component
of Dv \ T which the gray vertex resides in. If we repeat the construction in Figure 3.7b)
along the edges the gray curve ends belong to, we proceed along a left-right-path in T . If
the left-right-path is open, we can end the path (Figure 3.8) by using the appropriate
disk-modification from Figure 3.6, or if the left-right-path is closed, we can close it using
the disk-modification from Figure 3.7b).

Figure 3.8. The construction in Figure 3.7 can be applied to duplicate a left-right-path.
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3.6. Let T be a thrackle drawing of a graph G and P = ({v1, � , vk}, {v1v2, � ,

vk−1vk})⊂ G a simple left-right path that may be closed. Then we can con-
struct a thrackle drawing T ′ of G ∪̇ P ′, P ′ = ({v1

′,� , vk
′ }, {v1

′v2
′, � , vk−1

′ vk
′ }),

i.e. the graph G with an additional disjoint copy of P . Note that an
induced path P ⊂ind G is always a left-right path in T .

3.3 The Thrackle Conjecture

3.7. Thrackle Conjecture Conway

If a graph G with n vertices and m edges is thrackleable, then m 6n.

Or, equivalently: any graph with more edges than vertices has no thrackle drawing.

One thing that makes this conjecture interesting is the fact that it is apparently very hard
to prove. Conway formulated the conjecture in the 1960s and it still remains open today
(see [10], [7], [2]). Lovász, Pach and Szegedy gave an upper bound of m 6 2n − 3 in [7]

which was later improved by Cairns and Nikolayevsky to m 6
3

2
(n− 1) in [2].

While recent research was directed at establishing upper bounds for the number of edges a
thrackleable graph can have, early attempts to tackle the conjecture took a more con-
structive approach, making use of the concept of edge duplication. Woodall [10] showed
that it suffices to establish that none of a certain class of graphs have a thrackle drawing.
We will build on this result to convert the thrackle conjecture into a statement about the
thrackle drawings of circles C2n which are curves in the sense of chapter 2. The idea is
that we can then apply our machinery for handling chord diagrams to cast the thrackle
conjecture into a combinatorial form (see section 3.4) that does not take recourse to con-
tinuous concepts such as drawings.

The fact that thrackleability is closed under the subgraph relation suggests that it may be
possible to prove the Thrackle Conjecture by showing that a small class of graphs cannot
be thrackled: To construct a class of obstructions C with more edges than vertices, such
that

• every graph G =(V ,E) with |E |> |V | contains one graph in C as a subgraph, and

• all graphs in C are not thrackleable

would prove the Thrackle Conjecture.
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The construction we are now going to do is slightly more involved but true to the above in
spirit: Given a graph G that has more edges than vertices and assuming we have a
thrackle drawing of G, we are going to construct a thrackle drawing of a graph G′, which
belongs to the class of 8-graphs (see below). As each 8-graph has more edges than ver-
tices, the Thrackle Conjecture is thus equivalent to the conjecture that no 8-graph can be
thrackled.

An 8-graph is a graph that consists of two circles Ci and Cj that have precisely one
vertex in common. We are going to denote these graphs with 8i,j. Note that 8i,j has i +
j − 1 vertices and i + j edges. Hence, if any 8i,j has a thrackle drawing, the Thrackle Con-
jecture is false. Following Woodall [10], we are going to show that the converse is also
true.

3.8. Thrackle Conjecture – 8-Graph Version

None of the graphs 82k,2k for k > 3 has a thrackle drawing.

Before we can prove that the 8-Graph Version is indeed equivalent to the Thrackle Con-
jecture, we need to learn more about thrackle drawings of 8-graphs, should they exist.
The definition of a thrackle prescribes how often the two circles of an 8-graph cross each
other in a thrackle drawing. The computation of this number immediately yields the fol-
lowing result (see [7]).

3.9. In a thrackle drawing of 8i,j, the two circles cross each other at their
common vertex if and only if both i and j are odd.

Proof. In the drawing of 8i,j both circles Ci and Cj are closed curves and thus have to
cross each other an even number of times. Hence, they will cross at the common vertex v

iff their edges cross an odd number of times. Every edge Ci crosses every edge of Cj with
the exception of the edges incident to v: the two edges of Ci incident to v do not cross the
two edges of Cj incident to v. The number of crossings of edges of Ci with edges of Cj

therefore is ij − 4, which is odd iff both i and j are odd. �

We can now show the equivalence of the two versions of the thrackle conjecture.

Proof of the equivalence of the Thrackle Conjecture and its 8-Graph Version.
All that is left to show is that given a thrackle drawing T of a graph G = (V , E) with
|E | > |V |, we can construct a thrackle drawing of some 82k,2k. As G has more edges than
vertices there has to be a connectivity component of G with the same property, so
without loss of generality, we can assume that G is connected. Let n be the number of
vertices of G and S a spanning tree. S has n− 1 edges and we know |E |>n + 1 so we can
pick two edges e, e′ ∈E that are not in S. In S, there is a unique path P from one vertex
of e to the other, giving us a circle C = P ∪ e. Similarly we obtain a circle C ′= P ′∪ e′.

Now, the intersection of P and P ′ must again be a (possibly empty) path, it cannot be
disconnected: If v and w are vertices in the intersection, and U ⊂ P and U ′ ⊂ P ′ simple
paths connecting the two, then U = U ′⊂ P ∩ P ′, for otherwise U ∪U ′⊂ T would contain a
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circle. Given that e � e′, we can conclude that the relationship between C and C ′ must be
in one of the following (see Figure 3.9):

1. C and C ′ have neither an edge nor a vertex in common, but there is a path P con-
necting the two, i.e. C ∪P ∪C ′ is a “dumbbell graph”.

2. C and C ′ meet at exactly one vertex, i.e. C ∪C ′ =8i,j for some i, j.

3. The intersection of C and C ′ is a path, i.e. C ∪C ′ is a Θ-graph.

1. 2. 3.

Figure 3.9. A counterexample to the thrackle conjecture always contains a subgraph that is a
subdivision of one of the three (multi)graphs shown above.

In each case we have to construct a thrackle drawing of a 82k,2k from the given thrackle
drawing of C ∪ C ′ (resp. C ∪ P ∪ C ′). Note that using the construction employed in the
proof of 3.3 we can construct a 82k,2k -thrackle from a 82i,2j-thrackle. A 82i,2j-thrackle in
turn can be constructed in each of the three cases above using the following constructions:

i. constructing a 8i,j-thrackle from a Θ-thrackle

ii. constructing a 8i,j-thrackle from a dumbbell-thrackle

iii. constructing a 8i,2j-thrackle from a 8i,j-thrackle, if i is even and j is odd

iv. constructing a 8i,j+i-thrackle from a 8i,j-thrackle, if both i and j are odd

Note that we have to treat iii. and iv. separately, because we know from 3.9 that if both
circles are odd we have a different local situation at the common vertex. All that is left to
show, is that these constructions are indeed possible.

Constructions i. and ii.
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We will treat the cases of a dumbbell and a Θ-graph together by giving a local modifica-
tion of the path: in both cases we have a subgraph of the form shown in Figure 3.10a).
Note that because there are no loops or multi-edges in G we can assume without loss of
generality that the edges a, b, c, d in Figure 3.10b) are distinct. We then use the local
modification given in Figure 3.10b).

a) b)

↓↓

a

b

c

d

Figure 3.10. a) shows how we can apply the local modification given in b) to deal with cases i.
and ii.

The modified disk on the left satisfies the condition because all ends are incident to one
vertex. The disk on the right satisfies the condition of the Edge Duplication Lemma,
because c has exactly one point in common with each of the other edges, and by sym-
metry so has d. Note that the two edges that belong to one strip have no point in
common. The disks in between satisfy the condition as we know from the previous sec-
tion. In each disk Dw the pair of edges coming from the left have no common point in Dw,
while the pair of edges leaving on the right do have a common point. Thus, the condition
is fulfilled for every strip, even if the path consists of only a single edge. The graph given
by the drawing we just constructed is in both cases an 8i,j.

Construction iii.

Let Ci and Cj denote (the thrackle drawings of) the two circles of the 8i,j-thrackle. Let v0

be their common vertex and Cj = v0v1� vj−1. The local modification is given in Figure
3.11. We start out by edge-duplicating the open path v0v1� vj−1 such that the new vertex
in Dv is on the right-hand side of Sv0v1

and the two edges belonging to Sv0v1
do not cross.

As the path has j − 1≡ 0(mod 2) edges and as the side on which the new vertex is placed
alternates with each edge we duplicate, the new vertex in Dvj−1

is placed on the right-
hand side of Svj−1v0

. Another consequence of this construction is that the two edges
belonging to Svj−2vj−1

cross at Dvj−1
. The situation after this first step of the construction

is shown in Figure 3.11a).

We now modify Dvj−1
, Svj−1v0

and Dv0
as shown in Figure 3.11b). These three satisfy the

condition of the Edge Duplication Lemma by construction. We note that, as in Figure
3.11a), the edges belonging to Sv0v1

do not cross in Dv0
and the edges belonging to

Svj−2vj−1
do cross in Dvj−1

, so Sv0v1
and Svj−2vj−1

. All other disks satisfy the condition,
because they were not changed, and all other strips satisfy the condition because the inci-
dent disks were not changed. So, by the Edge Duplication Lemma, Figure 3.11b) does
really define a thrackle drawing. The path of gray edges and the path of black edges,
which are both of the same length, meet at v0 and at v0

′, so they form an even circle and
we have indeed constructed a thrackle drawing of 8i,2j.

3.3 The Thrackle Conjecture 89



�
a) b)

Figure 3.11. a) The first step is a path duplication. Because there are an even number of disks
between v1 and vj−1, the gray edge leaves Dv1

and arrives at Dvj−1
to the right of the black edge.

b) This further modification yields a 8i,2j thrackle. Note that both edges belonging to Svj−1v0
are

modified.

Construction iv.

Let Ci and Cj denote the circles of 8i,j and v0 their common vertex. Both i and j are odd,
so Ci and Cj cross at v0. This means we cannot use construction iii. We are still going to
duplicate the edges of one circle, say Ci = v0� vi−1, but instead of forming a larger circle
from the new edges and the edges of Ci we will form a larger circle from the duplicate of
Ci and Cj to obtain a thrackle drawing of 8i,j+i. As i and j are both odd Cj+i is even as
required.

See Figure 3.12 for the construction we will use. Ci is drawn vertically (and in gray) and
Cj is drawn horizontally. Again, it is easiest to think of this as a two step construction.
First, we duplicate the path v1� vi−1 such that the new vertex v1

′ is on the left-hand side
of Sv1v2

and such that the two edges belonging to Sv1v2
cross each other in Dv1

. The dupli-
cate is shown in black. Accordingly, as there are an odd number of strips Sv1v2

,� , Svi−2vi−1

between Dv1
and Dvi−1

, the new vertex vi−1
′ in Dvi−1

is on the right-hand side of Svi−1v0

and the edges belonging to Svi−2vi−1
cross each other in Dvi−1

(see Figure 3.12a). The
second step is to modify Dv0

, Dv1
and Dvi−1

as shown in Figure 3.12b). Each of these three
disks satisfy the condition of the Edge Duplication Lemma as do the strips incident with
them, so Figure 3.12b) does define a thrackle drawing, and it is indeed a thrackle drawing
of 8i,j+1: starting from v0 to the right, we arrive at Dv0

from the left. Given the local mod-
ification of Dv0

we continue downwards along the gray edge only to arrive at v0 again from
above. This gives us Cj+i, the vertical black edges give us Ci and both circles meet at v0

where they do not cross each other.
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The disks of Cj are not modified, except for Dv0
. The local modification of Dv0

is new,
but evidently the condition is fulfilled. The local modifications of the remaining disks are
known, so we do not have to check them. To apply the lemma, we still need to check the
strips of Ci.

The two edges belonging to S1 have a common vertex in Dv0
but do not meet in the other

disk. For S2, � , Si−1 we employed the usual path duplication so we do not need to check
them. It is correct that the gray edge is on the same side of the black edge in S1 and Si as
there are even many of the disks known from path duplication in between these two
strips. Also, we know that the black and gray edges belonging to Si do not cross in Dvi−1

.
Applying the Edge Duplication Lemma we conclude that Figure 3.12 gives us a thrackle
drawing.

ց

a)

b)

v0

v1

vi−1

Svi−1v0

Sv0v1

Sv1v2

Svi−2vi−1

Figure 3.12. a) The first step is to duplicate one of the two circles (minus the two edges inci-
dent with v0). As there are an even number of disks between the two modified disks, the gray
edge starts out at the top as it arrives at the bottom: to the left of the black edge. b) In the
second step we modify the three disks as shown to obtain a thrackle drawing of 8i,j+i.

�

3.4 From Thrackles to Curves

As we know the thrackle conjecture is true if and only if all 82i,2i are thrackleable. A
thrackle drawing of a 82i,2i-graph is a closed curve in the plane, so we can apply the
machinery we have developed for the study of closed curves in the plane. As both circles
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of 82i,2i are even, the common vertex v is a touching point of the two. Consequently, the
two Euler tours of 82i,2i give us a closed curve that touches itself at v and a closed curve
that crosses itself at v, respectively.

Moreover, we can also construct a thrackle drawing of a circle C4i from the thrackle
drawing of 82i,2i: We modify a small neighborhood around v as shown in Figure 3.13. Any
two edges have a common point in this disk, so the drawing we obtain is really a thrackle
drawing of a circle.

�
Figure 3.13. Local modification to apply to a neighborhood of the common vertex v of a 82i2j-
thrackle to obtain a C2i+2j-thrackle. The half-edges belonging to the one circle are shown in gray
while those belonging to the other are shown in black.

We have now seen that we can interpret a 82i,2i-thrackle as a crossing curve or that we can
apply a local modification to a 82i,2i-thrackle to obtain a particular C4i-thrackle which
again is a crossing-curve. How do the chord diagrams and interlacement graphs of these
two curves look? To answer this question we will first consider chord diagrams of circle
thrackles in general.

Chord Diagrams of Circle Thrackles

Let T denote a thrackle drawing of a circle Ci. As it is a drawing of a circle, T is a closed
curve with a chord diagram C. An edge of Ci corresponds to an interval on the rim of C.
Identifying the rim with S1 and interpreting it as the preimage of the curve T , the inter-
section of two intervals is a single point if the corresponding edges are incident and empty
otherwise. Interpreting the intervals as vertex sets of C, the intervals are pairwise disjoint
and cover V (C). The chords in C are exactly the crossings of two edges of Ci. As T is a
thrackle drawing, we conclude that if two edges are incident, there is no chord between
their intervals, and if they are incident, there is exactly one chord between their intervals.
We do not know the order of the end-points of the chords in a given interval.

We already know which circles have thrackle drawings, but we do not know in which
order a given edge will cross the other edges in such a drawing. In this regard it is helpful
to formulate a characterization of circle thrackles in terms of chord diagrams.

3.10. A circle has a thrackle drawing, if there exists some permutation of the
chord-ends in the intervals of the chord diagram as given above, such that
the resulting chord diagram is realizable. See Figure 3.14a).
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The kind of problem we are trying to solve is this: Given a chord diagram along with a
partition of the chord-ends into disjoint intervals, is there some permutation of the chord-
ends in each interval such that the resulting chord diagram is realizable? Obviously the
answer to the above question does not depend on the order of the chord-ends within an
interval of the chord diagram we are given. Thus, an equivalent and more compact way of
asking the same question is: Is there some cross-realizable chord diagram that can be
transformed into 3.14b) by contracting edges on the rim? Note that in this context we
allow the process of edge contraction to create loops and multi-edges (they are not
removed after a contraction).

More generally, the contraction of a chord diagram of a Cn-thrackle is a Kn with a Cn ⊂
Kn as rim.

1

2

3

4

5

6

1

2

3

4

5

6

a) b)

Figure 3.14. a) A thrackle drawing of the C6 gives a permutation of the curve ends in each
interval of the above chord diagram, such that the resulting chord diagram is cross-realizable. b)
Given a chord diagram of a thrackle drawing of C6, contract the edges on the rim that fall within
an interval and you obtain the K6.

In Figure 3.15a) and b) the chord diagrams of the three C6-thrackles we already met are
given along with their chord diagrams. In the next section we are going to use an equa-
tional version of the Rosenstiehl Criterion 2.15 for crossing curves to show that these are
indeed all C6-thrackles (up to equivalence of curves).

Interlacement Graphs of Circle Thrackles

An interval Ii on the rim of a chord diagram determines a set of vertices Si in the inter-
lacement graph: a chord v is in Si iff one of its end-points is in Ii. A partition of the
chord-ends into disjoint intervals gives a covering of the vertex set of the interlacement
graph, in which every vertex is in at least one and at most two sets. In the case of circle
thrackles the contracted chord diagram has now loops and multi-edges, which means in
particular that every vertex in the interlacement graph is in two sets Si and Sj with i � j.
If we do not know the order of the chord-ends in an interval Ii, we do not know for two
vertices v, w ∈ Si whether they are adjacent in the interlacement graph. However, the
induced subgraph on the vertex set Si has to be a “permutation graph” (see below). For
two vertices v, w that are not in any common set, the adjacency of v and w is determined
by the contracted chord diagram.
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c)

Figure 3.15. We have a) the three C6-thrackles in the first row, b) their corresponding chord
diagrams in the second row and c) their interlacement graphs in the last row. The classes of the
chords are given by the solid resp. the dashed lines in the chord diagram. In the interlacement
graphs, the dashed lines mark even edges, i.e. edges between vertices that have an even common
neighborhood.

A permutation graph is a graph G = (V , E) for which there exists a linear order ≺ on
V and a permutation π of V such that v, w ∈ V are adjacent in G iff they are inverted
with respect to ≺ and π. Suppose that V is a subset of the vertices of an interlacement
graph with an associated chord diagram C. If V corresponds to an interval on the rim of
C, the linear order ≺ is given by C. Note that while the linear order is determined only
up to reversal, the permutation graph is of course uniquely determined as the permutation
graph of (V ,≺ , π) is identical to the permutation graph of (V ,≺−1 , π).

In general the structure of the interlacement graph Λ = (V , E) of a Ck-thrackle can be
described as follows.

V = {{i, j}: 1 6 i < j 6 k and i, j are not next to each other}
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We abbreviate the unordered pair {i, j} as ij. The requirement that i, j are not “next to
each other” can be formalized as i+ 1< j and i= 1⇒ j 6 k− 1. Now, whether two vertices
ij and ab are adjacent or not is uniquely determined by the thrackle condition iff all four
integers i, j , a, b are distinct. In that case, the vertices ij and ab are adjacent if the pairs
of numbers are interlaced. All other adjacencies are undetermined. However, we can
observe that the induced subgraph on each of the sets Pi = {ij ∈ V } is a permutation
graph. On each of the Pi, the order is given by the rule ij ≺ i(j + 1) where addition is per-
formed in Zk +1. This structure can be visualized as shown in Figure 3.16.

14,16
13,15 13,16

12,14 12,15 12,16
11,13 11,14 11,15 11,16

10,12 10,13 10,14 10,15 10,16
9,11 9,12 9,13 9,14 9,15 9,16

8,10 8,11 8,12 8,13 8,14 8,15 8,16
7,9 7,10 7,11 7,12 7,13 7,14 7,15 7,16

6,8 6,9 6,10 6,11 6,12 6,13 6,14 6,15 6,16
5,7 5,8 5,9 5,10 5,11 5,12 5,13 5,14 5,15 5,16

4,6 4,7 4,8 4,9 4,10 4,11 4,12 4,13 4,14 4,15 4,16
3,5 3,6 3,7 3,8 3,9 3,10 3,11 3,12 3,13 3,14 3,15 3,16

2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12 2,13 2,14 2,15 2,16
1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12 1,13 1,14 1,15

Figure 3.16. This figure shows all the vertices of an interlacement graph of a C16 thrackle. The
chord 6, 12 that corresponds to the chord that connects intervals I6 and I12 is singled out. All ver-
tices with a white background are not adjacent to 6, 12 in any interlacement graph of a C6

thrackle. The vertices with a dark gray background are adjacent to 6, 12 in every interlacement
graph of a C6 thrackle. The vertices with a light gray background may or may not be interlaced
with 6, 12, depending on the order of the chords in the intervals I6 and I12 respectively.

The Thrackle Conjecture in Terms of Chord Diagrams

If a graph G on k vertices with a given rim Ck⊂G can be obtained from a chord diagram
C by contracting edges on the rim (without deleting multi-edges or loops), we write G < C

and say G is a contract of C.

Now we can provide two combinatorial reformulations of the thrackle conjecture, by
simply transferring the observations made at the beginning of this section into the lan-
guage of chord diagrams. That these two reformulations suffice to show the 8-graph ver-
sion is immediate and that they are necessary is not much more difficult show. In the
interest of presenting formally sound arguments, proofs will nonetheless be given further
below.
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3.11. Thrackle Conjecture – Chord Diagram Version

For all n > 3 there is no cross-realizable chord diagram C with K4n
′ <C.

Here K4n
′ is obtained from K4n by adding a chord and removing four others

as shown in Figure 3.17.

v4n v1v1
′

v2n v2n+1
′ v2n

Figure 3.17. A small section of K4n
′ . v1

′ and v2n+1
′ are adjacent to none of the vertices that are

not shown, while {v4n, v1, v2n, v2n+1} are adjacent to all of the other vertices. Formally K4n
′ can

be defined as follows: Let K4n = (V ,
(

V

2

)

) with V = {v1, � , v4n} such that the rim of K4n is

v1v2,� , v4n−1v4n, v4nv1. Then we define

K4n
′ 4 (V ∪{v1

′, v2n+1
′ },

(

V

2

)

\ {v4nv2n, v4nv2n+1, v1v2n, v1v2n+1}∪ {v1
′v2n+1

′ }

The equivalence of the 8-graph version and the chord diagram version of the Thrackle
Conjecture is immediate.

3.12. Thrackle Conjecture – Circle Thrackle Version

For all n > 3 there is no cross-realizable chord diagram C with K4n <C such
that the intervals I4n, I1, I2n, I2n+1 of C are connected as shown in Figure
3.18.

I4n I1

I2nI2n+1

Figure 3.18. A small section of C. The structure of the chord diagram induced by the construc-
tion in Figure 3.13. All other chords have their end-points on the dashed segments of the chord
diagram. A consequence is that if any other chord is interlaced with one of these four, it is inter-
laced with all of them: the four chords have the same neighborhood.

Proof of the Equivalence of the 8-Graph and the Circle Thrackle Version.
That the circle thrackle version suffices to prove the thrackle conjecture is immediate. We
will now show that it is also necessary: Let c be a cross-realization of the chord diagram C
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described in 3.12. Let c1 and c2 be those segments of c that correspond to the segments of
the rim of C that are solid in Figure 3.18. Consider the union of the arcs c1 ∪ c2 as a
multigraph drawing on the sphere and put r: = c \ c1∪ c2. All of r is contained in one face
F of c1∪ c2 as r does not cross c1∪ c2 and hence c1∪ c2 is contained in S2 \F which is con-
tractible. Contracting S2 \ F then gives us a thrackle drawing of 82n,2n on the sphere,
which in turn defines a thrackle drawing of 82n,2n in the plane. �

Note that these versions of the thrackle conjecture are statements about discrete objects.
While both the original thrackle conjecture and the 8-graph version state that there do
not exists certain graph drawings, which are essentially continuous functions, these two
versions state that certain chord diagrams do not exist. There are only countably many
objects to check and we have met many criteria to check a given chord diagram for cross-
realizability. Of course that does not necessarily mean that any of these two combinatorial
versions is easier to decide than the original thrackle conjecture.

The one property that makes the two formulations above hard to decide, is the fact that
whether or not a given chord diagram C with K4n < C is cross-realizable depends heavily
on the order of chords in a given interval. There are a huge number of chord diagrams C

with K4n < C but only a few of them are realizable. This puts the difficulty of proving the
thrackle conjecture into perspective: whether a given graph has a thrackle drawing or not
depends heavily on the order in which a given edge crosses the other edges it is not inci-
dent with.

However, precisely the fact that there are few cross-realizable chord diagrams C with
K4n < C gives hope that it might be possible to characterize all chord diagrams of circle
thrackles. Given such a characterization one could perhaps conclude that the substructure
given in Figure 3.18 cannot occur in the chord diagram of a circle thrackle. We will take a
first step in this direction by giving a proof that the chord diagrams given in Figure 3.15
are indeed all chord diagrams of a C6-thrackle in the next section.

A few words on computational approaches to the problem: it is possible to enumerate all
(equivalence classes under isomorphy of) chord diagrams C > K6 and check them for real-
izability on a desktop computer using a reasonably efficient implementation. To do the
same for K8 would take many years, and the first interesting case of K12 is utterly hope-
less. However, it may be possible to obtain complete lists of chord diagrams of Ck-
thrackles for larger k using smarter algorithms such as the one we will use in the next sec-
tion to calculate the list in the case of k = 6 by hand. Also, it might be worth a try to
search for a counterexample to the thrackle conjecture.

3.5 C6-Thrackles

3.13. Figure 3.15 shows all C6-thrackles.
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Proof. We first note that any chord diagram C with CK6
< C has a connected interlace-

ment graph and by 2.33 at most one cross-realization. So all we need to do is to show that
the three chord diagrams given in Figure 3.15 are the only cross-realizable chord diagrams
C with CK6

< C. To this end, we are going to use the equational version of our criterion
for the realizability of augmented chord diagrams 2.23. In fact, as we are dealing with
crossing curves, an equational version of the original Rosenstiehl Criterion suffices, which
states that the congruence

〈Nx, Ny〉+ ix,y · [x and y are of the same class]≡ 0

holds for every pair of chords x, y, which reduces to

〈Nx, Nx〉≡ 0

in the case of x = y. Recall that in the context of 2.23 we defined a boolean predicate

ia ,b = [chords a and b are interlaced]

In the context of circle thrackles, the value of ia,b is fixed for chords a and b that do not
share an interval and it is variable if a and b do share an interval. We are thus going to
group the variables ia,b by the interval the two chords share. Note that ia,b and ib,a are, of
course, one and the same. For each interval Ik we define a vector

vk =





i(k(k + 3), k(k + 4))
i(k(k + 2), k(k + 4))
i(k(k + 2), k(k + 3))





where the addition is in Z6 +1. In our case of C6-thrackles this gives, e.g.

v1 =





i14,15
i13,15
i13,14



, v3 =





i36,31
i35,31
i35,36



, v5 =





i52,53

i51,53

i51,52





Given vk, the permutations of the chords ending in Ik is uniquely determined. Note that
because ikj,kℓ = 1 iff the chords kj and kl are inverted in the permutation, the cases

vk =





1
0
1



 and vk =





0
1
0





cannot occur: in the former case both of the “outer” chords would be inverted with the one
in the middle, but not with each other, which is impossible, and in the latter case both of
the “outer” chords would be inverted with each other, but not with the one in the middle,
which, again, is impossible.

There is no cross-realizable chord diagram C with K6 <C and v1 =(0, 0, 0) or v1 = (1, 1, 1).
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Suppose C were such a chord diagram. Then we have

0 ≡ 〈N13, N13〉

≡ 1+ i13,14 + i13,15�
≡0 by assumption

+ i31,36 + i31,35

which means that i31,35 and i31,36 have to differ. This means that the first and middle

values of v3 differ, i.e. v1
3 
 v2

3. By the above argument, we conclude that v2
3 ≡ v3

3 i.e.
i35,36≡ i31,35. Considering 15 we obtain i51,53≡ i52,53. Now we have

〈N35, N35〉 ≡ 1 + i35,36 + i35,31�
≡0

+ i53,52 + i53,51�
≡0

≡ 1

which means that the condition of the Rosenstiehl Criterion does not hold for the chord
35.

The key idea here is that we have

〈N13, N13〉 ≡ 1 + v2
1 + v3

1 + v1
3 + v2

3

〈N35, N35〉 ≡ 1 + v2
3 + v3

3 + v1
5 + v2

5

〈N15, N15〉 ≡ 1 + v1
1 + v2

1 + v2
5 + v3

5

which we will, again, exploit in the next step.

If C is a realizable chord diagram with K6 < C and v1 = (1, 0, 0) or v1 = (0, 1, 1), then v1 =
v3 = v5.

Applying 2.23 to each of the chords 15 and 13 as above, we find that v2
5≡ v3

5 while v1
3
 v2

3.
Applying 2.23 to the pair 15, 13 we obtain

i15,13 · [x and y are of the same class] ≡ 〈N15, N13〉

≡ 1+ i31,36 + i51,52 + i14,15 · i13,14 + i51,53 · i31,35

≡ 1+ v1
3 + v3

5 + v1
1 · v3

1�
≡0

+ v2
5 · v2

3

≡ v2
3 + v2

5 + v2
5 · v2

3

If v1 = (1, 0, 0) then 13 and 15 are not interlaced and the above equation holds iff v2
3≡ v2

5≡
0 in which case v3

5≡ 0 and v1
3≡ 1. From our first observation we obtain v2

5≡ 0 and v2
3≡ 0.

Because v3 = (1, 0, 1) is forbidden, we have v3
3 ≡ 0 and v1

5 ≡ 1 follows from 〈N35, N35〉 ≡ 0.
So we conclude v1 = v3 = v5.

If v1 = (0, 1, 1) and 13 and 15 are not of the same class, we find v3 = v5 = (1, 0, 0) as above,
which is a contradiction because applying the above argumentation with v3 in the role of
v1 yields v1 = (1, 0, 0).

If v1 = (0, 1, 1) and 13 and 15 are of the same class, the equation reduces to 1≡ v2
3 + v2

5 +
v2

5 · v2
3, which holds iff not both v2

3 and v2
5 are zero. Suppose v2

3 
 v2
5, then we infer v3

3 ≡ v1
5

from 〈N35, N35〉 ≡ 0. On the other hand we have v1
3 ≡ v3

5. If v1
3 ≡ v3

3, either v3 or v5 would
be one of the forbidden vectors (1, 0, 1) or (0, 1, 0). If v1

3 
 v3
3, either v3 or v5 would equal
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(1, 0, 0) as neither can be (0, 0, 1) and we would again obtain a contradiction. So v2
3≡ v2

5≡
1 and from 〈N35, N35〉≡ 0 we infer that v1 = v3 = v5.

Conclusion

By symmetry we obtain the analogous result for v1 = (0, 0, 1) or v1 = (1, 1, 0). We can now
state that in a realizable chord diagram C with K6 < C we have v1 = v3 = v5 = : v and v2 =
v4 = v6 = : v ′ where v,v ′∈{(0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}. The chord diagrams in Figure
3.15 are, respectively, of the types

• v = v ′ =(1, 1, 0)

• v =(1, 0, 0) but v ′ =(1, 1, 0)

• v = v ′ =(1, 0, 0)

Considering symmetries, all that is left to show is that the three chord diagrams with

1. v =(0, 0, 1) and v ′ =(1, 0, 0)

2. v =(0, 1, 1) and v ′ =(1, 1, 0)

3. v =(0, 0, 1) and v ′ =(1, 1, 0)

are not realizable. We will check them one by one. Recall that by the Rosenstiehl Crite-
rion the even edges form a cut in the interlacement graph if it is realizable. In Figure 3.19
the respective chord diagrams and interlacement graphs are shown and, evidently, the
even edges do not form a cut in any of the three cases.

1. 2. 3.

Figure 3.19. The chord diagrams and interlacement graphs of the three cases that remain to be
checked. In the figure the even edges in the interlacement graphs are dashed.

�
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3.6 Touching Thrackles

Given our approach to Gauss codes, the concept of a touching thrackle suggests itself. As
the characterization of touching curves was much easier than the characterization of
crossing curves, there is hope that the bound on the number of edges is much easier to
show for touching thrackles than it is for (crossing) thrackles. And indeed this is the case.

A touching thrackle is a drawing of a graph G in the plane with the property that
every two edges have exactly one point in common: either a common endpoint or a
common interior point at which they touch each other. Martin Aigner asked whether
graphs that have a touching thrackle drawing necessarily have at most as many edges as
vertices. As C3 and C4 have a touching thrackle drawing (see Figure 3.20) this bound is
best possible.

Figure 3.20. Touching thrackles drawings of the C3 and the C4.

Recall that the C4 is the only circle that does not have a (crossing) thrackle drawing.
Indeed, it turns out that regarding circles the situation with touching thrackles is the
exact opposite of the situation with crossing thrackles.

3.14. All circles Ck for k > 5 do not have a touching thrackle drawing.

This is an immediate corollary of the following lemma.

3.15. If a graph G has a touching thrackle drawing and it contains an open or
closed path P of 4 edges as a subgraph, then G contains no other edge.

Proof. Let P = x1 ax2 bx3 cx4dx5, where possibly x1 = x5. Depending on whether or not
x1 = x5, the drawing of P will be an open curve with 3 double points or a closed curve
with 2 double points. In either case it will have 4 faces. We claim that the sets of edges
that have points on the boundary of these faces are

{a, b, c}, {a, b, d}, {a , c, d}, {b, c, d}.
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See Figure 3.21 for two examples. Note, that the statement of our claim is not entirely
precise. We consider the face f ′ in Figure 3.21 to correspond to the set {a, b, c} and yet d

does have precisely 2 points on the boundary of f ′. Hence, we refine our definition by
specifying that an edge e is not in “the set” of a face f , if it has only finitely many interior
points on the boundary of f . Note that if an edge e has an endpoint on the boundary of a
face f , it automatically has infinitely many points on the boundary of f , because we are
dealing with a path and hence every vertex has degree 6 2.

f ′

a) b)

a

b

c

d

ac

b
d

Figure 3.21. Two examples of touching thrackle drawings of an open path of 4 edges.

To see that our claim is true we argue as follows. By the thrackle condition, a and c touch
at a double point pac. The segment of the path between the two occurrences of pac forms
a simple closed curve that has two faces f1 and f2. The edge d has to be contained in one
of these faces (except for finitely many points), as it cannot cross another edge. Let f1 be
the face d is contained in. Therefore, the edges that have infinitely many points on the

boundary of f2 are a, b and c. In the drawing of P only the curve segment x1�a pac can
be contained in f2 (and that only if P is open). The removal of this segment from f2 does
not separate f2 and it does not change the set of curves that have infinitely many points
on its boundary. Thus, {a, b, c} is one of the sets we are looking for and, by symmetry, so
is {b, c, d}.

Now, edge d has to touch b at a point pbd and d has to have a point p ad in common with
a which may possibly be an endpoint. The segments

pad�a x2�b pbd�d pad

form a simple closed curve, with faces f1
′ and f2

′. Let f1
′ be the face not containing c. If P

is closed, f1
′ does not contain any other curve segments in our drawing of P , so f1

′ is a
face of P with corresponding set {a, b, d}. If P is open, f1

′ may or may not contain the

curve segments x1�a pad and/or p�d x5 where p ∈ {pad, pbd} is the double point d visits

last. Removing these segments from f1
′, however, does not separate f1

′ or change the set of
edges that have infinitely many points on its boundary, which is {a, b, d}. By symmetry
there also is a face of P that has edges {a, c, d} on its boundary. As P either is a closed
curve with 2 double point or an open curve with 3 double points, its drawing has precisely
4 faces. Hence all faces are accounted for and we are done with the proof of our claim.

Now, suppose there is another edge e in the touching thrackle drawing of G. On the one
hand e has to have a point in common with each of a, b, c and d, while on the other hand
it has to be contained in a face of P . However, no face has all four edges on its boundary.
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There is one fine point still to be considered: What about the finitely many interior points
an edge may have on the boundary of a face? e is not allowed to contain any of these, as
the thrackle condition forbids three edges to have a common interior point. Here we
should note that if a vertex x is on the boundary of a face f , then all edges of P incident
with x are contained in “the set” of f simply because they automatically have infinitely
many points on the boundary of f . �

This lemma shows that there are only very few graphs that have a touching thrackle
drawing. Still, there are infinitely many graphs that have a touching thrackle drawing and
as many edges as vertices. These graphs can be constructed by picking any star and
adding any one edge (see Figure 3.22).



Figure 3.22. All stars with one additional edge (shown on the left) have a touching thrackle
drawing. Such a drawing of the 6-star with one additional edge is shown on the right.

Given 3.15 it is easy to prove the bound on the number of edges for graphs that have a
touching thrackle drawing.

3.16. Touching Thrackle Theorem

If a graph G has a touching thrackle drawing, then |E(G)|6 |V (G)|.

Proof. A counterexample G cannot contain a C4 as a subgraph, as G would contain one
additional edge, which is impossible by 3.15. Now, as in Woodall’s reduction of the
Thrackle Conjecture, every counterexample G will have a component that contains two
cycles, that is two subgraphs C3 that do not have an edge in common. (If the two copies
of C3 shared an edge, a C4 would result.) As they are in one component, there is a path of
0 or more edges linking the two. But then we find an open path of 4 edges in G, plus one
additional edge, which again yields a contradiction. �

Now, what if we consider thrackles in which the edges may cross or touch each other? A
graph that has such a drawing can have more edges than vertices as the following example
of a C4 with a single chord shows (Figure 3.23).

Figure 3.23. The K4 minus one edge, drawn such that any two edges either have a common
endpoint, or a common interior point.
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So, what is the correct bound on the number of edges in this setting?
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